

Earthquake Sources

Based on a lecture by James Mori of the Earthquake Hazards Division, Disaster Prevention Research Institute, Kyoto University

U.S. Department of the Interior U.S. Geological Survey

Theoretical Seismology 1: Sources

- What is the Earthquake Source?
 Elastic Rebound
 Fault Slip \IPSic Double-couple Force
- Seismic Moment Tensor
- Models of Earthquake Faults
- Earthquake Size Magnitudes Seismic Moment Energy

What is an Earthquake?

The Source Fault mechanisms

The Shaking Wave propagation Structures

What is the cause of Earthquakes ?

- Associated with faults (source or cause?)
- Associated with magma?

(Most) Earthquakes are fault movements

Comparing an earthquake to the breaking of a chopstick

Failure

- Build-up of stress (strain energy)
- Difficult to predict time and place
- Breaks at weakest point
- Hear precursors
- Sound of breaking same as seismic waves

Elastic Rebound Theory Reid (1910)

8.5 feet offset in San Andreas fault from 1906 earthquake. Marin County

San Francisco Earthquake April 18, 1906

Mw 7.7-7.9 470 km rupture of San Andreas fault

www.uwgb.edu/DutchS/EarthSC202Notes/quakes.htm

Types of faults

Equivalent Body Forces

science for a changing world

Single Force

Dipole

Couple (Single Couple)

Double Couple

Single Couple versus Double Couple

Single Couple

Double Couple

• P polarity pattern same

Controversy settled by Maruyama (1963)

- S polarity pattern different
- Single Couple 'resembles' fault slip

Showed that Double Couple was equivalent to fault slip

Moment tensor: dipoles and couples

 $M_{pq}(t) = \int \eta_q f_p(\mathbf{\eta}, t) dV(\mathbf{\eta})$

9 components, but symmetric matrix so 6 are independent

Moment Tensor for an Explosion

 $M_{11} = M_{22} = M_{33}$

USGS

{||||

 $M_{12} = M_{21} = M_{13} = M_{31} = M_{23} = M_{32} = 0$

Moment Tensor for Fault Slip

Double Couple Fault - Slip

USGS

{||||

 $M_{11} = M_{22} = M_{33} = M_{23} = M_{23} = M_{13} = M_{31} = 0$

1979 Imperial Valley, California (M=6.5)

Photo by D. Cavit, USGS

Harvard/NEIC Moment Tensor Solutions

This is a REVISED solution for today's earthquake near Sumatra. The solution includes approximately the first 9 hours of data recorded after the earthquake. Owing to the large size of the earthquake, the short-period cutoff for the analysis was set to 300 s.

December 26, 2004, OFF W COAST OF NORTHERN SUMATRA, MW=9.0

Meredith Nettles Goran Ekstrom

|||

CENTROID, MOMENT TENSOR SOLUTION HARVARD EVENT-FILE NAME M122604A DATA USED: GSN MANTLE WAVES: 73S,202C, T=300 CENTROID LOCATION: ORIGIN TIME 01:01: 9.0 0.3 LAT 3.09N 0.04;LON 94.26E 0.03 DEP 28.6 1.3;HALF-DURATION 95.0 MOMENT TENSOR; SCALE 10**29 D-CM MRR= 1.04 0.01; MTT=-0.43 0.01 MPP=-0.61 0.01; MRT= 2.98 0.16 MRP=-2.40 0.16; MTP= 0.43 0.00 PRINCIPAL AXES: 1.(T) VAL= 4.01;PLG=52;AZM= 36 -0.12; 3: 130 2.(N) -3.89; 222 3.(P) 38; BEST DOUBLE COUPLE: MO=4.0*10**29 NP1:STRIKE=329;DIP= 8;SLIP= 110 NP2:STRIKE=129;DIP=83;SLIP= 87

Single-force earthquakes volcanic eruptions and landslides

{|||

Mount St. Helens, USA Before and after eruption Photos by Harry Glicken, USGS

Kanamori et al. Journal of Geophysical Research, v. 89, p. 1856-1866 1984

Circular Crack – Sato and Hirasawa, 1973

Sato, Y., and Y. Hirasawa (1973). Body wave spectra from propagating shear cracks, *J. Phys. Earth* **21**, 415–431

Fig. 3. The far-field displacement as a function of time radiated from the present model. The figures in the left column represent the P waves and those in the right column the S waves. The time, L/v, required for rupture to travel from the center to the edge of the fault surface is chosen as a unit of time. This is for the case $v/\beta=0.7$.

Haskell Line Source Dislocation Source

Sumatra earthquake, Dec 28, 2004

Ishii et al., Nature 2005 doi:10.1038/nature03675

Complicated Slip Distributions

Earthquake Size – Magnitude

log of amplitude

Distance correction

 $M = \log A - \log A_0$

Charles Richter 1900-1985

{|||

Bruce Bolt. Earthquakes. WH Freeman and Company

Types of Magnitude Scales

Period Range

0.1-1 sec

M_L Local magnitude (California) regional S and surface waves

M_j JMA (Japan Meteorol. Agency) regional S and 5-10 sec surface waves

m_b Body wave magnitude

M_s Surface wave magnitude

M_w Moment magnitude

M_{wp} P-wave moment magnitude

M_m Mantle magnitude

teleseismic P waves 1-5 sec

teleseismic surface 20 sec waves teleseismic surface > 200 sec waves teleseismic <u>P waves</u> 10-60 sec

teleseismic surface > 200 sec waves

Relationship between different types of magnitudes

FIGURE 1 Curves for the average magnitude differences. Variations of M_S-M_W , m_B-M_W , M_L-M_W , and M_J-M_W with M_W (or log M_0) are shown.

Science for a changing world

From Chapter 44, International Handbook of Earthquake & Engineering Geoscience

Seismic moments and fault areas of some famous earthquakes

Types of Magnitude Scales

science for a changing world

Period Range

M _L	Local magnitude (California)	regional S and surface waves	0.1-1 sec
M _j	JMA (Japan Meteorol. Agency)	regional S and surface waves	5-10 sec
m _b	Body wave magnitude	teleseismic P waves	1-5 sec
M_s	Surface wave magnitude	teleseismic surface waves	20 sec
M _w	Moment magnitude		
M _{wp}	P-wave moment magnitude	teleseismic P waves	10-60 sec
M _m	Mantle magnitude	teleseismic surface waves	> 200 sec

Types of Magnitude Scales

science for a changing world

Period Range

M _L	Local magnitude (California)	regional S and surface waves	0.1-1 sec
M _j	JMA (Japan Meteorol. Agency)		
m _b	Body wave magnitude	teleseismic P waves	1-5 sec
M_s	Surface wave magnitude	teleseismic surface waves	20 sec
M_{w}	Moment magnitude	teleseismic surface waves	> 200 sec
M_{wp}			

Magnitudes for Tsunami Warnings

- Want to know the moment (fault area and size) but takes a long time (hours) to collect surface wave or free oscillation data
- Magnitude from P waves (mb) is fast but underestimates moment
 - ⇒ If have time (hours), determine M_m from mantle waves

⇒ For quick magnitude (seconds to minutes), determine M_{wp} from P waves

- amplitude measured in frequency domain
- surface waves with periods > 200 sec

{||||

M_{wp} P-wave moment magnitude

M_{wp} P-wave moment magnitude

$$M_{o} = Max | \int u_{z}(t)dt | 4\pi \rho \alpha^{3} r/F^{p}$$

 $M_{w} = (log_{10}M_{o})/1.5 - 10.73$

- Quick magnitude from P wave
- Uses relatively long-period body waves (10-60 sec)
- Some problems for M>8.0

{|||

Magnitudes for the Sumatra Earthquake

m _b	7.0	1 sec P wave	131 stations
m _{blg}	6.7	1 sec Lg waves	6 stations
M _{wp}	8.0 – 8.5	60 sec P waves	
M_s	8.5 - 8.8	20 sec surface waves	118 stations
M _w	8.9 - 9.0	300 sec surface waves	
M _w	9.1 - 9.3	3000 sec free oscillations	

Number of Earthquakes Worldwide for 2000 - 2006 Located by the US Geological Survey National Earthquake Information Center							
Magnitude	2000	2001	2002	2003	2004	2005	2006
8.0 to 9.9	1	1	0	1	2	1	0
7.0 to 7.9	14	15	13	14	14	10	4
6.0 to 6.9	158	126	130	140	141	150	21
5.0 to 5.9	1345	1243	1218	1203	1515	1720	239
4.0 to 4.9	8045	8084	8584	8462	10888	13897	1834
3.0 to 3.9	4784	6151	7005	7624	7932	9151	1202
2.0 to 2.9	3758	4162	6419	7727	6316	4639	502
1.0 to 1.9	1026	944	1137	2506	1344	26	4
0.1 to 0.9	5	1	10	134	103	0	1
No Magnitude	3120	2938	2937	3608	2939	866	120
Total	22256	23534	27454	31419	31194	* 30460	* 3927
Estimated Deaths	231	21357	1685	33819	284010	89354	12

.

Fault Areas of Damaging Earthquakes

1995 Kobe Mw 6.9

Deaths			
1944	1000		
1946	1330		
1995	5502		
USG	S, NEIC		

Seismic Radiated Energy

Things to Remember

- 1. Earthquake sources are a double couple force system which is equivalent to Fault Slip
- 2. The moment tensor describes the Force System for earthquakes and can be used to determine the geometry of the faulting
- 3. Earthquake ruptures begin from a point (hypocenter) and spread out over the fault plane
- 4. The size of an earthquakes can be described by magnitudes, moment, and energy.
 M_m and M_{wp} are types of magnitudes used for tsunami warning systems

