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Standards, criteria, and procedures for NOAA evaluation of

tsunami numerical models

C.E. Synolakis1, E.N. Bernard2, V.V. Titov3, U. Kânoğlu4, F. González2

1. Introduction

The National Oceanic and Atmospheric Administration (NOAA) is the fed-
eral agency charged with mitigating tsunami hazards in the United States.
NOAA’s National Weather Service operates the two Tsunami Warning Cen-
ters (TWCs) in the U.S., and NOAA has spearheaded the national effort to
develop inundation maps for evacuation planning through the National Tsu-
nami Hazard Mitigation Program (NTHMP). The latter was formed through
a directive of the U.S. Senate Appropriations Committee in 1994 to develop
a plan for a tsunami warning system that reduces the risk to coastal resi-
dents. Following the horrific Indian Ocean tsunami of 26 December 2004, the
U.S. expanded the role of NTHMP to serve as the organizational framework
to implement the recommendations of the National Science and Technology
council report “Tsunami Risk Reduction for the United States: A Frame-
work for Action” (NSTC, 2005):

• Develop standardized and coordinated tsunami hazard and risk assess-
ments for all coastal regions of the United States and its territories.

• Improve tsunami and seismic sensor data and infrastructure for better
tsunami detection and warning.

• Enhance tsunami forecast and warning capability along our coast-
lines (Pacific, Atlantic, Caribbean, and Gulf of Mexico) by increas-
ing the number of Deep-ocean Assessment and Reporting of Tsunamis
(DART) buoys, tide gauges, and seismic sensors feeding real-time data
into on-line forecast models.

• Ensure interoperability between the U.S. national system and other
regional tsunami warning systems.

• Provide technical expertise and assistance, as appropriate, to facilitate
development of international tsunami and all-hazard warning systems,
including for the Indian Ocean.
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• Encourage data exchange and interoperability among all regional tsu-
nami and all-hazard warning systems, such as the Intergovernmental
Oceanographic Sub-commission for the Caribbean (IOCARIBE).

• Promote development of model mitigation measures and encourage
communities to adopt construction, critical facilities protection, and
land-use planning practices to reduce the impact of future tsunamis.

• Increase outreach to all communities, including all demographics of
the at-risk population, to raise awareness, improve preparedness, and
encourage the development of tsunami preparedness plans.

• Conduct an annual review of the status of tsunami research and de-
velop a strategic plan for tsunami research in the United States.

Since standards for modeling tools do not currently exist, and given the
increased number of states in the Atlantic, the Pacific, and territories in
the Caribbean that will need to develop tsunami mitigation plans, there
is the risk that forecast products may be produced with older or untested
methodology. This is not just a U.S. problem, but worldwide, as UNESCO’s
plans are to build local capacity for developing maps in most member nations
facing tsunami hazards. Incorrectly assessing possible inundation can be
costly both in terms of lives lost, or in unnecessary evacuations in areas
larger than warranted that may put lives at risk and reduce the credibility
of the system, even in areas that were not directly affected. Standards are
urgently needed to ensure a minimum level of quality and reliability for
forecasting and inundation products.

To calculate tsunami currents, forces and runup on coastal structures,
and inundation of coastlines, one must numerically calculate the evolution
of the tsunami wave from the deep ocean to its target coastal community. No
matter what the numerical model, both validation (the process of ensuring
that the model solves the parent equations of motion accurately) and veri-
fication (the process of ensuring that the model used represents geophysical
reality appropriately) are an essential part of the model development. Vali-
dation ensures that the model performs well in a wide range of circumstances
and is accomplished through comparison with analytical solutions. Verifi-
cation ensures that the computational code performs well over a range of
geophysical problems. Many existing numerical models have been validated
through comparison with analytical solutions. Very few have also been ver-
ified with laboratory and field measurements. Even fewer have been tested
in an operational forecast setting. Numerical models that have been tested
under all three conditions represent the gold standard for both inundation
mapping and real-time forecasting.

In the last ten years, the process of model validation and verification has
shown that terminal effects of tsunamis can be described by depth-averaged
equations. Interest in these equations has arisen because comparisons with
both large-scale laboratory data and field data have demonstrated a remark-
able and perhaps surprising capability to model complex evolution phenom-
ena, and in particular the maximum runup and inundation, extremely well
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over wide ranges of tsunami waves. In the current state of knowledge, the
main uncertainty arises from the ambiguities of the initial condition, pre-
suming that the solution methodology solves the equations of motion satis-
factorily. With the increasing deployment of tsunameters that monitor the
tsunami evolution in the deep ocean and allow for real-time updates of the
initial data, this remaining uncertainty is rapidly diminishing.

While equation solvers for more comprehensive approximations of the
parent Navier-Stokes equations now exist, they are presently too compu-
tationally intensive for inundation mapping or operational forecasting, and
are generally used for free-surface flows of very limited geographical extent.
These models remain largely unvalidated over wide ranges of tsunami events.
Further, the rapid development of packaged numerical modeling tools that
allow for the production of high-end animations even by untrained users,
underscores the issue of validating specific calculation tools used in tsunami
inundation and forecasting to avoid producing mathematically correct, but
physically unrealistic solutions.

In this report, benchmark tests for validating and verifying computa-
tional tools for predicting the coastal effect of tsunamis are discussed. State-
of-the-art methods for validation of tsunami codes are reviewed. Standards
and guidelines for validation and verification are recommended for opera-
tional codes used for inundation mapping and tsunami forecasting.

2. Model Evaluation Standards

Tsunami inundation models have evolved in the last two decades through
careful and explicit validation through comparisons of their predictions with
1+1 (one directional and time) and 2+1 (two directional and time) analytical
solutions, laboratory experiments, and field measurements. (See Synolakis
and Bernard (2006) for a comprehensive discussion of the evolution of tsu-
nami hydrodynamics.)

Numerical codes often include terms with “friction” factors in an at-
tempt to model physical dissipation, but primarily to stabilize what is an
inherently marginal inundation computation, given the small flow depths
and large velocities. Large friction factors make calculations more stable,
but may under-predict inundation distances and runup heights. Smaller
friction factors (or just relying on the inherent numerical dissipation of any
numerical calculation) result in more realistic predictions, but they tend to
be less stable, depending on the particular differencing scheme used. Thus it
is recommended that any code used for modeling tsunami inundation at geo-
physical scales be tested with all three types of validation data: analytical
solutions, laboratory measurements, and field measurements.

While there is in principle no absolute certainty that a numerical code
that has performed well in all the benchmark tests will also produce realistic
inundation predictions with any given source motions, validated codes largely
reduce the level of uncertainty in their results to the uncertainty in the
geophysical initial conditions. Further, when coupled with real-time free-
field tsunami measurements from tsunameters, validated codes are the only
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choice for realistic forecasting of inundation; the consequences of failure are
too serious to take chances with less-validated numerical procedures.

In what follows, the steps for validating 2+1 codes are discussed leaving
the details of the benchmark problems to Appendix A. Although 1+1 codes
were used two decades ago for developing early inundation maps, are gener-
ally unreliable for inundation mapping and entirely inadequate for tsunami
forecasting. Nonetheless, analytic solutions to the corresponding 1+1 hy-
drodynamic equations are invaluable to the process of model validation, and
several are presented in Appendix A. Specific steps are recommended for the
approval of modeling tools, their further development, and their transfer to
operations. These steps can be classified into six categories: basic hydrody-
namic considerations, analytical benchmarking, laboratory benchmarking,
field data benchmarking, scientific evaluations, and operational evaluations.

2.1 Basic considerations

Two basic steps are required before benchmarking the numerical codes: mass
conservation and convergence.

Mass conservation: The first basic step in ensuring that a numerical
model accurately simulates tsunami evolution is ensuring that the model
conserves mass. While the conservation of mass equation is one of the equa-
tions of motion that are solved in any numerical procedure, cumulative nu-
merical approximations can sometimes produce results that violate mass
conservation. This is particularly true when friction factors or smoothing to
stabilize inundation computations are used. Calculations of conservation of
mass should be such that the total initial displaced volume should be within
5% of the total displaced volume at the end of the computation, i.e., when
the initial wave is entirely reflected and offshore.

Convergence: The next basic step is checking convergence of the numer-
ical code to a certain asymptotic limit, ideally the actual solution of the
equations solved, if one exists. The optimal locations to check convergence
are the extreme runup and rundown. The numerical predictions should be
seen to converge to a certain value, and further reductions in step sizes should
not change the computed results.

2.2 Analytical benchmarking

Why is analytical benchmarking important? To calculate tsunami currents,
forces, and runup on coastal structures and coastal inundation, one must
calculate the evolution of the tsunami wave from deep ocean to its target.

Exact solutions of the shallow water-wave equations are useful for vali-
dating the complex numerical models that are used for final design. These
often involve ad-hoc assumptions, particularly during inundation computa-
tions when grid points are introduced and withdrawn as the shoreline re-
cedes and advances. Comparisons of numerical predictions with analytical
solutions can identify systematic errors, as when using friction factors or
dissipative terms to augment the idealized equations of motion.

Here, we only present certain common 1+1 propagation problems. The
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waves evolve over constant-depth and then over plane or composite beaches.
Even though most results are derived for idealized waveforms often used in
tsunami engineering to describe the leading wave of a tsunami, the gener-
alization to realistic spectral distributions of geophysical tsunamis is trivial
with the closed-form integrals provided.

It is important to note that validation should take place with non-
periodic waves. During runup, individual monochromatic waves reflect with
slope-dependent phase shifts. Whereas a code may model a periodic wave
well, it may not model wave superposition well. This was a problem of
earlier shallow water-wave formulations that did not account for reflection.
While their predictions for the Carrier–Greenspan (Carrier and Greenspan,
1958) sinusoids was correct, they exhibited significant errors when modeling
solitary waves or N-waves.

Further, the analytical solutions allow for using cyber-waves of the same
scale as geophysical tsunamis. This is in contrast to laboratory experiments
that require modeling of small-scale experiments.

Analytical solutions for three problems are presented for analytical bench-
marking:

Single wave on simple beach: Solitary and N-wave propagation first over
the constant-depth then sloping beach is considered. Details of the analyti-
cal solutions are given in Appendices A2.1.1, A2.1.2, and A2.1.3. Numerical
models should calculate the maximum runup of nonbreaking solitary and
N-waves within 5% of the calculated value from the analytical solution. Nu-
merical experiments should be undertaken in a range of depths from 50 cm
to 1000 m, and the initial waves scaled appropriately, i.e., for a H̃/d̃ = 0.02
initial solitary wave; at 50 cm the initial height should be 1 cm, at 1000 m
it should be 2 m. In addition, the initial value problem solution of the non-
linear shallow water-wave equations is described and runup/rundown and
velocity quantities for shoreline are presented in Appendix A2.1.4 for bench-
marking. Any well-benchmarked code should produce results within 5% of
the calculated value from the analytical solution.

Solitary wave on composite beach: 1+1 models that perform well with
the solitary wave experiments must still be tested with the composite beach
geometry, for which an analytical solution (Appendix A2.2) exists, with soli-
tary waves as inputs. Numerical predictions should not differ by more than
5% in predicting maximum runup for non-breaking waves.

Subaerial landslide on simple beach: Inundation computations are ex-
ceedingly difficult when the beach is deforming as a landslide is occurring.
Numerical predictions of the runup from an idealized landslide of translating
Gaussian shaped mass should not differ from the analytical model by more
than 10% (Appendix A2.3).

2.3 Laboratory benchmarking

Why is laboratory benchmarking important? It is quite clear from the ear-
lier discussion that numerical methods have evolved only through careful
validation accomplished through comparisons with analytic solutions and
laboratory measurements. Long before the availability of numerical codes,
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physical models at small scale have been used to visualize wave phenomena
in the laboratory and then predictions were scaled to the prototype. Even
today, when designing harbors, laboratory experiments—scale model tests—
are used to confirm different flow details and validate the numerical model
used in the analysis.

For the purpose of validating inundation models, the scale differences
are not believed to be important. Numerical codes developed in the last
decade that consistently produce predictions in excellent agreement with
measurements from small-scale laboratory experiments have been shown to
model geophysical-scale tsunamis well. For example, a numerical code that
adequately models the inundation in a 1 m-deep model is also expected
to model the inundation in the 1 km-deep geophysical geometry, as the grid
sizes are adjusted accordingly and in relationship to the scale of the problem.
Scale models, in general, do not have bottom friction characteristics similar
to real ocean floors or sandy beaches, but this has proven not to be a severe
limitation. Tsunamis are such long waves that bottom friction tends to be
less important than the inertia of the motion. Friction may be important
in cases of extreme inundation, as observed during the 2004 Boxing Day
tsunami in Banda Aceh with 3 km inundation distances. However, it has
been observed that even with numerical codes that use friction factors within
reasonable limits, the predictions are not sensitive to the first order.

Experimental results from five laboratory tests are described as labora-
tory benchmarking:

Single wave on simple beach: Given a small number of 2+1 wave basin
laboratory measurements, 1+1 versions of the 2+1 models should be tested
with 1+1 directional laboratory models. The solitary wave experiments on
the canonical model—waves propagating over a constant-depth region and
running up a 1:20 sloping beach—should be used first. Numerical models
should calculate the maximum runup of nonbreaking solitary waves within
5% of the measured values in the laboratory. For breaking waves, the models
should produce predictions within 10% of the measured values, and they
should consistently predict the runup variation described in Appendix A3.1.

Solitary wave on composite beach: 1+1 models that perform well with
the solitary wave experiments must still be tested with the composite beach
geometry (see Appendix A3.2 for details). This additional test will ensure
that the code is stable enough for large waves that are near the breaking
limit offshore (H̃/d̃ = 0.696). Numerical predictions should not differ by
more than 5% from the experimental values, and the numerical procedure
should be capable of predicting the entire runup variation.

Conical island: 2+1 dimensional calculations should be tested with the
conical island geometry of 1:4 slope (Appendix A3.3). The numerical method
should stably model two wave fronts that split in front of the island and
collide behind it. Predictions of the runup on the back of the island where
the two fronts collide should not differ by more than 20% from the laboratory
measurements.

Monai Valley : 2+1 numerical computations should then be tested with
the laboratory model of Monai Valley, Okushiri Island, Japan (Appendix
A3.4). The initial condition is a leading depression N-wave, and the entire
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simulation shows how well the code performs in a rapid sequence of with-
drawal and runup. Comparison of results from different codes has shown
that the maximum runup in these experiments can be calculated within
10%, which is thus the standard.

Landslide: As discussed, landslide wave generation remains the frontier
in terms of numerical modeling, particularly for aerial slides. These involve
not only the rapid change of the seafloor, but also the impact of the slide
on the shoreline. Therefore numerical codes that will be used to model
landslide-generated tsunamis need to be tested against three-dimensional
landslide experiments given in Appendix A3.5. It is expected to estimate
maximum runup predictions within 10% of the experiments.

2.4 Field data benchmarking

Why is field data benchmarking important? Verification of a model in a
real-world setting is an important part of model validation, especially for
operational models. No analytical or laboratory data comparisons (or any
limited number of tests, for that matter) can assure robust model perfor-
mance in the operational environment. Test comparisons with real-world
data provide an additional important step in the validation of a model to
perform well during operational implementation. The main challenge of
testing a model against real-world events is to overcome uncertainties of the
tsunami source. While the source of the wave is deterministic in the con-
trolled setting of the laboratory experiment and can be usually reproduced
precisely, field data always have uncertainties in the source. For tsunamis,
deep ocean measurements are the most unambiguous data quantifying the
source of a tsunami.

Only a very limited number of high-quality deep-ocean tsunami mea-
surements exist and these do not include data for Pacific tsunamis that
have been destructive or caused inundation (Titov et al., 2005). No DART
tsunameters existed in the Indian Ocean at the time of the megatsunami,
since DART had only been deployed in the Pacific Ocean. Satellite altimetry
measurements of the Indian Ocean tsunami do not provide enough quality
and coverage to constrain the tsunami source. Hydrodynamic inversion re-
mains an ill-posed problem and criteria for its regularization are lacking.
Deep ocean measurements allow for more defensible inversions, since they
are not affected by local coastal effects. Several events have been recorded
by both deep-ocean and coastal gages in the Pacific that allow reasonably
constrained comparison with models. The expanded DART system array
will be providing more tsunami measurements for future events, expanding
the library of well-constrained propagation scenarios for testing.

The 10 June 1996 Andreanov Islands (Tanioka and González, 1998) and
the 4 October 1994 Kuril Islands (Yeh et al., 1995) events were recorded
by several research tsunameters (without real-time data transmission) at
similar locations offshore of Alaska and the U.S. West Coast. The offshore
model scenario for the Andreanov Island event was obtained from the fore-
cast database by inverting data from research Bottom Pressure Recorders
(BPRs) as described in Titov et al. (2005). The inversion of the Kuril Islands
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data was performed using BPR gages in similar locations. The 17 November
2003 Mw = 7.8 Rat Islands tsunami was recorded in real time by the DART
tsunameter system and provides a good operational test of field data.

High quality bathymetry/topography data, source definition, and field
runup measurements suggest using Okushiri Island, Japan, tsunami data as
one of the field benchmarks (Appendix A4.1). In addition, the Rat Islands,
Alaska, offshore model scenario constrained by the deep-ocean measurement
can be used as input for testing high-resolution inundation models for Hilo
Bay, Hawaii, where tide gage recording provides data for model comparison
(Appendix A4.2).

Okushiri Island: 2+1 computations of the field measurements from the
Hokkaido-Nansei-Oki tsunami around Okushiri Island, Japan (Appendix
A4.1). The initial condition to be used is DCRC-17a (Takahashi, 1996),
which is a composite fault with three segments. The bathymetry and mea-
surements are provided in Appendix A4.1. Predictions for the maximum
runup at Aonae, Okushiri Island, Japan, should not differ by more than
20% from the measurements.

17 November 2003 Rat Islands tsunami: For operational codes, testing
should invert the tsunameter signal of the 17 November 2003 Rat Islands
tsunami to improve the initial estimate of sea surface displacement derived
from a seismic deformation model, then use the results as input to a Hilo,
Hawaii, inundation model to hindcast the tide gage record. This is the most
difficult but most realistic test for any operational model, for it involves
a forecast (now hindcast) and has to be done much faster than real time.
Here, at least the first four waves must be simulated and compared with the
observations, with amplitudes and periods accurate to within 25%, maximum
amplitude accurate to within 10%, and an arrival time error less than 3 min.
Details of the problem are given in Appendix A4.2.

2.5 Scientific evaluation

Peer-review documentation: Model validation and verification is a continu-
ing process. Any model used for inundation mapping or operational forecasts
needs to be presented in peer-reviewed scientific journals with impact fac-
tors greater than 0.5. One or more of these publications should include
benchmark comparisons identical or similar to those described above.

Formal scientific evaluation: A formal evaluation process of individual
models needs to be established to avoid ad hoc decisions as to the suitability
of any given model. This process may include solicitation of additional
reviews of the model’s veracity by experts, or the requirement that additional
testing be performed. This process will set the standard for the best available
practice at any given time, and it will hopefully eliminate the liability to
NOAA, universities, states, engineers, and geophysicists who collaborate on
the development of inundation maps.
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2.6 Operational evaluation

The operational evaluation should be done by a test-bed consisting of re-
search and operational parts of NOAA. While the scientific evaluation pro-
cess may identify models that are realistic and computationally correct, some
models may still not be appropriate for operational inundation mapping or
forecasting applications. An additional evaluation process must be estab-
lished to assess a number of model features that bear on important opera-
tional factors, such as special implementation hardware/software issues, ease
of use, computation time, etc.

Operational evaluation of candidate real-time forecast models should in-
clude the following steps:

Step 1—Meet Operational Forecasting and Inundation Mapping Require-
ments and Objectives: Operational requirements include: basic forecasting
computation, analysis and visualization tools; integration with operations
(vs. separate, stand-alone applications); basic data assimilation techniques;
computational resources needed to meet milestones; etc. If a candidate
model does not meet specified NOAA forecasting or inundation mapping
requirements and objectives, it should be rejected at this point.

Step 2—Meet Modular Development Requirements: Various pieces of the
forecast model must be developed in parallel based on the overall objectives
defined in Step 1.

Step 3—Meet Test Bed and Model Standards: In this step, the candidate
model is tested against operational standards, with special attention given
to the models ability to simulate previous, major tsunamis with the required
speed and accuracy. Based on these test results, forecast model development
may return to Step 2, proceed, or the candidate model may be rejected for
operational use.

Step 4—Meet Operational Testing Requirements: The candidate model
is integrated into the operational setting for testing. Potential sources are
defined and the model is tested in a forecasting mode on an operational
platform. Graphical interfaces are developed and forecast models are applied
to a few cases to test operational integration and important individual factors
such as speed, accuracy, and reliability (see Section 3, below). Operational
testing and feedback is provided by the TWCs at this point, and adjustments
are made as necessary.

Step 5—Implement Operationally : The model is fully integrated into the
operational setting and procedures to provide operational products.

3. Criteria for Evaluating Operational

Forecasting and Inundation Mapping Models

Given the accumulated experience in the tsunami community in the past 50
years, it is now possible to describe the requirements for an ideal tsunami
model. Given an earthquake fault mechanism and tsunameter data, the ideal
model should accurately predict tsunami inundation of at-risk coastlines in
a sufficiently short time. Sufficiently short is defined as the time interval
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between the initiation of the tsunami and the calculation of the inundation
forecast that allows for evacuation of the target communities. For example,
the State of Hawaii needs about 3 hr for a complete and orderly evacuation.
An ideal model would accurately forecast inundation at least 3 hr before the
tsunami impact is expected anywhere in Hawaii.

What are the requirements for building such an ideal model, and what
constraints need to be imposed for model selection and/or further develop-
ment? The following sections define and provide rationale for these con-
straints.

3.1 Model computational time constraints

The forecast speed will always depend on the distance from the source to the
forecast community. However, an ideal forecast would provide a real-time
forecast which, after being transmitted to local authorities, allows at least a
few minutes before the tsunami impacts the nearest target community. This
time interval would allow sirens to trigger the evacuation of beaches and
coastal residents and give emergency personnel time to mobilize resources
and prepare for search and rescue.

Further, an ideal model would correctly predict the duration of the event.
Tsunamis are a series of waves. Tsunamis often get trapped in closed bays
or on the continental shelf, resulting in sea level oscillations that may per-
sist for several hours. During the 1993 Okushiri Island, Japan, inundation,
bay oscillation at Aonae trapped the tsunami for over 30 min, and a large
portion of Aonae remained submerged for a large portion of this time. The
Crescent City, California, harbor oscillated for more than 4 hr following the
15 November 2006 tsunami. An operational forecast must ideally provide an
estimate of the time that it is safe for search and rescue operations to begin
without endangering the lives of responders.

Computational speed standards for inundation maps and real-time fore-
casts can be different. The current best-practice standard in the U.S. is
to use a combination of real-time forecast models at coarse resolution and
integrate real-time tsunameter measurements to update the initial sea sur-
face forecast (Titov et al., 2005; Whitmore, 2003). Then a fine-resolution
inundation model, developed beforehand and placed on stand-by, ready to
be run, uses the output of the fast coarse-resolution computation to produce
a quick but physically realistic inundation forecast. The latter is referred to
as a Stand-by Inundation Model (SIM).

A long-term forecast for inundation map production is produced months
or years before a tsunami strikes; computational time is not the limiting step
here. When conducting inundation mapping, the effort is concentrated on
acquiring the best available bathymetry/topography and initial conditions
to produce the most accurate model results. The objective is to provide
guidance for evacuation planning and other hazard assessment products.
Inundation mapping is performed at the highest resolution the available
resources allow. The current standard is 50 m grid resolution, but site-
specific features may demand even finer resolution. Successful computations
at resolutions down to 5 m have been performed.
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3.2 Model accuracy constraints

The accuracy of any given model depends on how well the computational
procedure represents the correct solution of the parent equations of motion.
When exact solutions exist (as, for example, for certain cases of the linear and
nonlinear shallow water-wave equations), the determination of the accuracy
of a solution algorithm is straightforward, i.e., through comparisons of the
numerical results with the analytical predictions. Determining maximum
runup numerically within 5% of the analytical solution is now possible with
a handful of models.

For most bathymetries of geophysical interest, analytical solutions do not
exist, and it is unlikely that they will ever be determined, due to the com-
plexity of the physical terrain. However, a few laboratory models at smaller
scale than the prototype exist: for example, the scale model of Okushiri
Island, as described earlier. The Catalina Island, Los Angeles, 2004 model
validation workshop of the National Science Foundation identified a hand-
ful of models that could predict the laboratory measurements within 10%.
While greater compliance with measurements is hoped for in the next decade,
10% accuracy is achievable now and should be considered a standard.

While a numerical model may be validated through comparisons with an-
alytical results and laboratory data, this does not necessarily imply physical
realism for tsunamis of geophysical scales. One example is wave breaking.
While a numerical model may realistically approximate the solution of the
Navier-Stokes equations at laboratory scales, it may not do so at large scales.
Calculating the evolution of breaking waves involves calculating turbulent
shear terms and invoking turbulence closure constraints which are scale de-
pendent. Therefore a reliability constraint needs to be applied, and this is
discussed in the next subsection.

For operational forecast models, propagation accuracy of 5% is now pos-
sible (Titov et al., 2005). For inundation models, accuracy of 10% with
respect to analytical results and laboratory data is also now possible. Both
should be considered as standards.

An associated accuracy constraint is grid resolution. This depends on
the complexity of the shoreline. On a fairly plane and very long beach such
as those of Southern California, a 100 m grid resolution may be sufficient.
The smallest offshore and onshore features likely to affect tsunami impact
on a coastal community should be reflected in the numerical grids. If a
community is fronted by a sand spit of width 100 m, at least four grid points
are needed to provide accurate resolution of the flow over the spit, implying
a resolution of less than 25 m. If a coastline is sparsely populated, a 100 m
resolution may be sufficient for satisfactory inundation maps, even when the
shoreline is complex.

3.3 Model reliability and realism constraints

Model reliability refers to how well a given model predicts inundation con-
sistently and realistically from a geophysical point of view. Linear theory
may predict wave evolution consistently, but unfortunately not always in
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a realistic manner. Linear theory predicts that waves during shoaling will
keep growing in height, whereas in reality waves will eventually break, if
large enough and when exceeding threshold height-to-depth and height-to-
wavelength ratios.

The issue of reliability is crucial. Several numerical models now widely
used include ad hoc friction factors. Given that these factors were developed
not to model the physical manifestation of frictional dissipation, but simply
to stabilize what is by its very nature a marginally stable computation,
it is not possible to know a priori how well a model that has been fairly
successful in a small number of cases performs in more general cases. For
example, a model developed and calibrated for stability with examples from
steep coastlines with less than 200 m inundation distances may not perform
equally well when employed to forecast the inundation from a tsunami that
penetrates more than 3 km inland, as the 26 December 2004 Boxing Day
tsunami did in Banda Aceh.

It is clear that any numerical model for inundation predictions needs to be
tested over a variety of scales from the laboratory to prototype to ensure both
reliability and realism. Ideally, inundation models should be continuously
tested with every new set of laboratory data or tsunami field data that
becomes available. This will also allow for their further improvement. On
the other hand, operational propagation forecasting is by its nature less
dependent on scale. Some of the existing methods to test for model accuracy,
reliability, and realism are discussed in Appendix A.

4. Summary of Model Evaluation Procedures

State-of-the-art inundation codes in use today have evolved through a pains-
taking process of careful validation and verification, while operational codes
have been developed through extensive verification with measurements from
real tsunamis, to the point that every new event poses a diminishing chal-
lenge. Mining this experience, procedures for approval and application of
numerical models for operational uses are proposed as follows:

1. Establishment of standards for model validation and verification;

2. Scientific evaluation of individual models;

3. Operational evaluation of individual models;

4. Development of operational applications for forecasting;

5. Procedures for transfer of technology to operations.

Only through parallel testing of models under identical conditions, as
when there is a tsunami emergency and an operational forecast is performed,
can the community determine the relative merits of different computational
formulations, an important step to further improvements in speed, accuracy,
and reliability.

Figure 1 illustrates the process of model development and evaluation for
operational use. The process of operational model development should be
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Figure 1: Flowchart illustrating the process of NOAA operational model development.

as inclusive as possible, to ensure the active participation of the geophysical,
oceanographic, engineering, and NOAA research communities. Currently,
scientific evaluation of a tsunami model takes the form of peer-reviewed
publications and NSF tsunami model benchmark workshops. NOAA re-
search and operations will evaluate the tsunami model operationally. The
Community Modeling Activity will solidify these evaluations into a sustain-
able developmental effort that will feed NOAA operations with new and
refreshed models. NOAA’s responsibility is to test benchmarked models for
operational suitability to define if a model fits the NOAA operational stan-
dards. This evaluation is done by operational and research components of
NOAA as a part of the Research-to-Application implementation plan. The
models—those that fit NOAA’s operational standards—may be implemented
for operations. The models that do not fit the standards (due to accuracy,
speed, or robustness deficiencies) will stay in the research community mod-
eling activity for improvement and further development.

It is emphasized again that model testing must remain a continuous pro-
cess. Operational products produced in real time during an actual event
must be thoroughly reviewed, and the operational models systematically
tested in hindcast mode after each tsunami strikes. The results must be
documented and reported to assist the community in developing and im-
plementing improvements, through the identification and resolution of any
serious problems or inadequacies of the models and/or products.

While this process may appear onerous, it reflects our state of knowledge
as of December 2006, and is the only defensible methodology when human
lives are at stake.
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Appendix A: Existing Methods for Model
Validation and Verification

Benchmarking of numerical models can be classified into four categories:
Basic hydrodynamic considerations, analytical benchmarking, experimental
benchmarking, and field benchmarking. Here, specific benchmark problems
for validating and verifying computational tools for predicting the coastal
effect of tsunamis are described in detail. Some of the benchmark problems
described here were used as benchmark problems in the 1995 (Yeh et al.,
1996) and 2004 (Liu et al., 2007) Long-Wave Runup Models Workshops in
Friday Harbor, Washington, and Catalina Island, Los Angeles, California,
respectively.

1 Basic hydrodynamic considerations

Two most basic steps are required in ensuring that a numerical model works
for predicting evolution and inundation. While the first step is ensuring that
the model conserves mass, the second basic step is checking convergence of
the numerical code to a certain asymptotic limit.

1.1 Mass conservation

The conservation of mass equation is part of the equations of motion that
are solved in any numerical procedure, but cumulative numerical approxima-
tions can sometimes produce results that violate mass conservation. This is
particularly the case when friction factors are used, or smoothing to stabilize
inundation computations for breaking waves.

Conservation of mass can be checked by calculating the water volume at
the beginning and at the end of the computation. This should be done by
integrating disturbed water depth η(x, y, t) over the entire flow domain, i.e.,
if the flow domain extends from the maximum penetration during inundation
x = Xmax to the outer location of the source region XS , and y = Ymax to
YS , then total displaced volume V (t) is

V (t) =

XS∫

Xmax

YS∫

Ymax

η(x, y, t)dxdy. (A1)

The integral of η(x, y, t) should be used instead of the integral of the
entire flow depth h(x, y, t) = η(x, y, t) + d(x, y, t)—where d(x, y, t) is the
undisturbed water depth—because the latter is likely to conceal errors in the
calculation. Typically, η � d at offshore integrating h will simply produce
the entire volume of the flow domain and will mask errors. Note that testing
of the conservation of mass as above involves placing a closed domain within
reflective boundaries.

Numerical models use absorbing boundaries to allow the wave to radiate
outwards. While some loss of mass may in theory occur due to the differenc-
ing at the boundary, placing the computational boundaries far enough from
the source ensures this loss is minimal. Nonetheless, testing conservation
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of mass with open boundaries and monitoring the volume fluxes over the
corresponding boundaries at x = xb and y = yb is computationally possible.
The net flux needs to be added or subtracted to the total displaced volume.

The calculation of the entire volume of the wave motion of the flow do-
main at the beginning and end of the computation—to ensure that mass is
conserved—is very important in code validation. Once the associated mass
fluxes at the boundaries are considered, numerical errors can be highly addi-
tive, and mass invariably decreases in numerical computations. It is essential
that codes self-monitor the entire volume; if the difference between start and
finish is greater than 5%, the grid needs to be readjusted. Usually with few
changes in Δx, Δy, and Δt, the conservation of mass can be improved.

Calculations of conservation of mass should be such that the total initial
displaced volume V (t = 0) should be within 5% of the total displaced volume
at the end of the computation V (t = T ) where T represents the computation
end time. It is assumed that the end of the computation is when the initial
wave is entirely reflected and offshore.

1.2 Convergence

The next basic step is checking convergence of the numerical code to a
certain asymptotic limit, presumably the actual solution of the equations
solved. The grid steps Δx and Δy need to be halved, and the time step Δt
reduced appropriately to conform with the Courant–Friedrics–Levy (CFL)
criterion. The optimal locations to check convergence are the extreme runup
and rundown. A graph needs to be prepared presenting the variation of the
calculated runup and rundown (ordinate) with the step size (abscissa). As
the step size is reduced, the numerical predictions should be seen to converge
to a certain value, and further reductions in step size should not change the
results.

2 Analytical benchmarking

The shallow water-wave (SW) equations describe the evolution of the water-
surface elevation and of the depth-averaged water particle velocity of waves
with wavelengths large compared with the depth of propagation. The equa-
tions assume that the pressure distribution is hydrostatic everywhere, i.e.,
there is no variation with depth of any of the other flow variables. In this
section we present several analytic solutions to the 1+1 version of these
equations. As stated in Section 2 of this report, 1+1 models are generally
unreliable for inundation mapping and entirely inadequate for operational
tsunami forecasting, but they are invaluable to the process of testing and
validating models.

2.1 Single wave on a simple beach

The so-called canonical problem of the shallow water-wave equations is the
calculation of a long wave climbing up a sloping beach of angle β coupled to
a constant-depth region (Fig. A1). The origin of the coordinate system is at
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Figure A1: Definition sketch for canonical bathymetry, i.e., sloping beach con-
nected to a constant-depth region.

the initial position of the shoreline and x increases seaward. Dimensionless
variables are introduced as follows:

x =
x̃

d̃
, (η, h0) =

(η̃, h̃0)

d̃
, u =

ũ√
g̃d̃

, and t =
t̃√
d̃/g̃

. (A2)

Here quantities with tilde are dimensional and η is the amplitude, u is the
depth-averaged horizontal velocity, h0 is the undisturbed water depth, d̃ is
the depth of the constant-depth region, and g̃ is the gravitational accelera-
tion. The topography is described by h0(x) = x tan β when x ≤ X0 = cot β
and h0(x) = 1 when x ≥ X0 = cot β. Even though dimensionless variables
are not preferred in engineering practice, here they have distinct advantages
as everything scales simply with an offshore characteristic depth. In numer-
ical solutions, dimensional variables are most often used.

Consider a tsunami evolution problem described by the 1 + 1 nonlinear
shallow water-wave (NSW) equations:

ht + (uh)x = 0,
ut + uux + ηx = 0,

(A3)

with h(x, t) = η(x, t)+h0(x). Through elementary manipulations, neglecting
nonlinear terms, (A3) reduces to

ηtt − (ηxh0)x = 0, (A4)

an equation known as the linearized shallow water-wave (LSW) equation.
Over constant-depth h0 = 1, then

ηtt − ηxx = 0, (A5)

the classic one-dimensional wave equation.
The solution follows directly from the Fourier transform of the equation

when a boundary condition for the wave amplitude η(X1, t) is specified, i.e.,
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when the incident wave η(x, t) at the constant-depth region is known at some
x = X1, and can be described by a Fourier integral of the form

η(X1, t) =
∫ +∞

−∞
Φ(ω)e−iωtdω. (A6)

Consider the canonical problem of a constant-depth region of depth h0 = 1
joined to a sloping beach of angle β, with the toe of the beach at x = X0.
Synolakis (1986, 1987) matched the linear theory solution at the constant-
depth with the solution over the sloping beach as derived by Keller and
Keller (1964) to derive the solution over the sloping beach for a wave with
a transform as given by (A6),

η(x, t) = 2
∫ +∞

−∞
Φ(ω)

J0(2ω
√
xX0)e−iω(X0+t)

J0(2X0ω) − iJ1(2X0ω)
dω, (A7)

where X0 = cot β. This solution is only valid when 0 ≤ x ≤ X0; when x < 0,
(A4) does not reduce to Bessel’s equation. Notice that the integral (A7) can
be evaluated with standard numerical methods; however, the advantage of
this form is that it allows calculation of the solution for many physically
realistic tsunami waveforms simply by plugging in the Φ(ω) of the incoming
wave, hopefully known at some offshore location X1.

2.1.1 Solitary wave evolution and runup As discussed in Syno-
lakis (1986, 1987) it is possible to derive exact results for the evolution and
runup of solitary waves based on linear theory. Solitary waves have long
been used as a model for the leading wave of tsunamis. Solitary waves were
first described by Russel (1845) as the great waves of translation, and con-
sist of a single elevation wave. While capturing some of the basic physics
of tsunamis, they do not model the physical manifestation of tsunamis in
nature, which are invariably N-wave like with a leading-depression wave fol-
lowed by an elevation wave. A solitary wave centered offshore at x = Xs at
t = 0 has the following surface profile,

η(x, 0) = Hsech2γ(x−Xs), (A8)

where γ =
√

3H/4 and H is the dimensionless wave height, i.e., H = H̃/d̃.
The function Φ(ω) associated with this profile is derived in Synolakis (1986)
and it is given by:

Φ(ω) =
2
3
ωcosech(αω)eiωXs , (A9)

where α = π/(2γ).
In the context of water-wave theory, the solitary wave (A8) is an ex-

act solution of the Korteweg-de-Vries (KdV) equation; therefore, a KdV
solitary wave propagates over constant-depth without any change in shape.
The KdV theory is both dispersive and nonlinear, and solitary waves are
the only waves with this unique property of unchanging shape. However,
(A8) can be used as an initial condition for other wave theories, without,
of course, a priori expectation that the SW model will preserve the classic
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soliton properties, which include their ability to go through each other (in-
teract) without any change in shape through nonlinear interactions. This
having been said, since the LSW is nondispersive and linear, hence all waves
propagate over constant-depth without any change in shape. However, in
the range of wave steepness and amplitudes relevant for tsunamis, it is now
well established that, at least for the 1 + 1 problem far from the shoreline,
the LSW theory, which also preserves the wave shape for propagation over
constant-depth, is quite adequate (Liu et al., 1991) and useful when the
engineering problem has simple geometry.

The derivation of the amplitude evolution for solitary waves is not as
straightforward as often assumed. When superposing sinusoids, there is a
frequency ω-dependent phase shift. It is therefore not obvious that linear su-
perposition will produce a similar amplitude variation given this frequency-
dependent phase shift.

To describe the evolution of a solitary wave up a plane beach, Synolakis
(1986, 1987), substituted (A9) into (A7) to obtain

η(x, t) =
4
3

∫ +∞

−∞
ωcosech(αω)

J0(2ω
√
xX0)e−iω(X0−Xs+t)

J0(2X0ω) − iJ1(2X0ω)
dω, (A10)

where, as earlier, α = π/
√

3H . This integral can be evaluated directly
through contour integration. In the region where the wave evolves on the
sloping beach far off the shoreline, x is large, and (A10) becomes

η(x, t) =
4π2

3α2
(
X0

x
)1/4

+∞∑
n=1

(−1)n+1ne−(π/a)θ′n, (A11)

with θ′ = X0 − Xs − t − 2
√
xX0. The maximum of the power series is

1/4, therefore the maximum local value of the wave amplitude ηmax is given
explicitly by

ηmax

H
= (

X0

x
)1/4 = (

1
h0

)1/4; (A12)

this is an amplitude variation similar to Green’s law.
The region over which (A12) applies is the region of gradual shoaling; the

region of rapid shoaling is often identified with the Boussinesq result, i.e.,
ηmax ∼ h. The fact that both evolution laws may coexist was first identified
by Shuto (1973). Synolakis and Skjelbreia (1993) also present results which
show that Green’s law type evolution is valid over a wide range of slopes and
for finite-amplitude waves at least in the region of gradual shoaling.

The results (A10) can now be readily applied to derive a result for the
maximum runup of a solitary wave climbing up a sloping beach. Writing
R(t) = η(0, t), i.e., R(t) is the free-surface elevation at the initial shoreline;
in the LSW theory, the shoreline does not move beyond x = 0. The maxi-
mum value of R(t) is the maximum runup R, arguably the most important
parameter in the long-wave runup problem, and it is the maximum vertical
excursion of the shoreline. Per Synolakis (1986), from equation (A10), it can
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be deduced that

R(t) = 8H
+∞∑
n=1

(−1)n+1ne−2γ(Xs−X0−t)n

I0(4γX0n) + I1(4γX0n)
. (A13)

The series can be simplified further by using the asymptotic form for large ar-
guments of the modified Bessel functions. The resulting series is of the form
s =

∑∞
n=1(−1)n+1n3/2χn; its maximum value smax occurs at χ = 0.481 =

e−0.732 with smax = 0.15173. Then the following expression results for the
maximum runup R:

R = 2.831
√

cot βH5/4. (A14)

This result is formally correct when
√
H � 0.288 tan β—the assumption

implied when using the asymptotic form of the Bessel functions. Equation
(A14) was first derived by Synolakis (1986) and has since been referred
to as the runup law and shown in Fig. A2. As will be apparent in later
sections, this methodology is quite powerful to find the maximum runup and
it allows calculation of the runup of other waveforms such as N-waves, not
to mention the runup of waves evolving over piecewise-linear bathymetries.
Recent results suggest that the dependence of the runup on the slope and on
the offshore wave height in a two-dimensional problem of idealized conditions
is often quite similar to this one-dimensional power law.

The asymptotic result (A14) is valid for waves that do not break during
runup, suggesting that it is appropriate to use the qualifier nonbreaking for
waves that do not break during runup but may or may not break during run-
down. The real usefulness of any asymptotic result is how well it identifies
the scaling, i.e., it can identify the solution dependence on the problem pa-
rameters; numerical solutions will invariably produce more accurate specific
predictions, but they can rarely provide useful information about the prob-
lem scaling. To check if the runup law (A14) provides the correct scaling,
Synolakis (1986, 1987) examined the classic laboratory data set of Hall and
Watts (1953), Fig. A2. That study includes both breaking and nonbreak-
ing wave data without identifying them as such, clearly because there was
no realization of the differences; the empirical runup relationships derived
by Hall and Watts (1953) are not directly applicable when determining the
runup of nonbreaking waves. To perform a posteriori identification of those
data, the breaking criterion H < 0.479(cot β)−10/9 was used.

2.1.2 N-wave runup Most tsunami eyewitness accounts suggest that
tsunamis are N-wave like, i.e., they are dipolar, which means they appear
as a combination of a depression and an elevation wave, and frequently as
a series of N-waves, sometimes known as double N-waves. Up until the late
1990s, the solitary wave model was used exclusively to evaluate the runup
of tsunamis. The N-wave model was motivated by observations from earth-
quakes in Nicaragua [1 September 1993], Flores, Indonesia [12 December
1992], Okushiri, Japan [7 July 1993], East Java, Indonesia [6 June 1994],
Kuril Islands, Russia [4 October 1994], Mindoro, Philippines [14 Novem-
ber 1994], Manzanillo, Mexico [9 October 1995], Chimbote, Peru [3 March
1996], Papua New Guinea [17 July 1998], Vanuatu [26 November 1999], and
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Figure A2: Laboratory data for maximum runup of nonbreaking waves climbing
up different beach slopes: � 1:19.85 (Synolakis, 1986), ♦ 1:11.43 (Hall and Watts,
1953), � 1:5.67 (Hall and Watts, 1953), ∗ 1:3.73 (Hall and Watts, 1953), 	 1:2.75
(Pedersen and Gjevik, 1983), + 1:2.14 (Hall and Watts, 1953), × 1:1.00 (Hall and
Watts, 1953). Solid line represents the runup law (A14).

Caminade, Peru [20 June 2001], all of which produced tsunami waves which
caused nearby shorelines to first recede before advancing. The most specific
description was during the 9 October 1995 Manzanillo, Mexico earthquake.
One eyewitness saw the shoreline retreat beyond a rock outcrop which was
normally submerged in over 5 m depth and at a distance of about 400 m
from the shoreline, suggesting a leading-depression wave. Before the megat-
sunami of 26 December 2004, this was the only photographic evidence of
these leading-depression waves (Borrero et al., 1997). Recall that the megat-
sunami manifested itself first with a rapid withdrawal of the water surface
in most locales east of the rupture zone.

Modeling tsunamis with solitary waves cannot possibly explain these ob-
servations, because a solitary wave is technically a leading-elevation wave.
Therefore, and to reflect the fact that tsunamigenic faulting in subduction
zones associated with both vertical uplift and subsidence of the sea bottom,
Tadepalli and Synolakis (1994) conjectured that all tsunami waves at gener-
ation have an N-wave or dipole shape. Tadepalli and Synolakis (1994, 1996)
proposed a general function as a unified model for both near-shore and far-
field tsunamis as generalized N-waves. When a wave propagates with the
trough first it is referred to as a leading depression N-wave or LDN. When
the crest arrives first, it is a leading-elevation wave or LEN. Also, Tade-
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palli and Synolakis (1994) defined another type of N-wave of this class with
leading-elevation and depression waves of the same height and at a constant
separation distance and refer to this wave as an isosceles N-wave with a
surface profile given by

η(x, 0) =
3
√

3H
2

sech2[γ(x−XN )]tanh[γ(x−XN )], (A15)

with γ = 3
2

√√
3
4H. Wave profile (A15) is an LDN and has a maximum wave

amplitude H. The function Φ(ω) associated with this profile is derived in
Tadepalli and Synolakis (1994) using contour integration and it is given by:

Φ(ω) =
2i
3γ
ω2cosech(

πω

2γ
)eiωXN . (A16)

Now, the maximum of R(t) = η(0, t) can be evaluated for LEN using the
symmetry of the profile given in (A15) and one can find that

RN−wave = 3.86
√

cot βH5/4. (A17)

Comparing the runup of the Boussinesq solitary wave (A14) with the runup
of an isosceles N-wave, RN−wave = 1.364RSolitary . Because of the symmetry
of the profile, this is also the minimum rundown of an isosceles leading-
depression N-wave. Tadepalli and Synolakis (1994) showed that the normal-
ized maximum runup of nonbreaking isosceles LEN is smaller than the runup
of isosceles LDN, and that both are higher than the runup of a solitary wave
with the same wave height, and the latter is known as the N-wave effect
(Fig. A3).

The two-dimensional character of the generation region limits the direct
application of the N-wave and solitary wave models. However, N-wave theory
does provide a conceptual framework for analysis and for explaining certain
field observations qualitatively.

2.1.3 Boundary value problem To solve the nonlinear set (A3) for
the sloping beach case, h0(x) = x tan β, Carrier and Greenspan (1958) in-
troduced the hodograph transformation known as Carrier–Greenspan trans-
formation:

u =
ψσ

σ
, (A18)

η =
ψλ

4
− u2

2
, (A19)

t = cot β(
ψσ

σ
− λ

2
), (A20)

x = cot β(
σ2

16
− ψλ

4
+
u2

2
), (A21)

into (A3), and they derived the following second-order ordinary differential
equation:

(σψσ)σ = σψλλ. (A22)
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Figure A3: Maximum runup of isosceles N-waves and solitary wave. Top and
lower set of points are results for the maximum runup of leading-depression and
-elevation isosceles N-waves, respectively. Dotted line represents the runup of soli-
tary wave (A14). Lower and upper insets compare a solitary wave profile to a
leading-depression and -elevation isosceles N-waves, respectively.

Note that the original Carrier–Greenspan transformation does not include
cot β in (A20) and (A21) because of a different scaling as given in (A25) in
section A2.1.4. Note also the similarity with the linear form of the shallow
water-wave equation (LSW), (ηxh0)x = ηtt. Also, notice the conservation
of difficulty. Instead of having to solve the coupled nonlinear set (A3), one
now has to solve a linear equation, but the transformation equations which
relate the transformed variables with the physical variables are nonlinear,
coupled, and implicit. Yet, a redeeming feature is that in the hodograph
plane, i.e., in the (σ, λ)-space, the shoreline is always at σ = 0. This al-
lows for direct analytical solutions without the complications of the moving
shoreline boundary.

In general, it is quite difficult to specify initial or boundary data for the
nonlinear problem in the physical (x, t)-space coordinates without making
restrictive assumptions; a boundary condition requires specification of the
solution at (X0,∀t), and an initial condition specification at (t0,∀x), but, in
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practice, the wave approaching the beach is only known offshore for (X0 ≥
cot β, t < t0), where t0 is the time that the wave reaches the x-location X0.
Even when boundary or initial conditions are available in the (x, t)-space,
the process of deriving the equivalent conditions in the (σ, λ)-space is not
trivial.

These difficulties have restricted the use of this transformation to prob-
lems that can be reduced directly to those solved by Carrier and Green-
span (1958). Synolakis (1986) revived the Carrier–Greenspan formalism by
developing a method to specify a boundary condition including reflection.
Synolakis (1986) used the solution of the equivalent linear problem, as given
by (A7), at the seaward boundary of the beach, i.e., at x = X0 = cot β
corresponding to σ = σ0 = 4. Then, equation (A19) implies that η(X0, t) ≈
1
4ψλ(4, λ). Assuming that ψ(σ0, λ) → 0 as λ→ ±∞, Synolakis (1986, 1987)
showed that the Carrier–Greenspan potential is given by

ψ(σ, λ) = −16i
X0

∫ +∞

−∞

Φ(κ)
κ

J0(σκX0/2)e−iκX0(1−λ
2
)

J0(2κX0) − iJ1(2κX0)
dκ. (A23)

Even though the solution now can be obtained in the (σ, λ)-space using
(A18) and (A19) and can be converted to the solution in the (x, t)-space
through (A20) and (A21), the problem with this transformation is deriving
a solution for a particular-time t∗ or at a particular-location x∗. Synolakis
(1986) and later Kânoğlu (2004) evaluated the solution either for given t∗ or
at given x∗ using the Newton–Raphson iteration algorithms, respectively;

λi+1 = λi −
[

t∗ − t(λ)
∂
∂λ [t∗ − t(λ)]

∣∣∣∣∣
λi

or σi+1 = σi −
[

x∗ − x(σ)
∂
∂σ [x∗ − x(σ)]

∣∣∣∣∣
σi

.

(A24a, b)

Here t(λ) and x(σ) are given with (A20) and (A21), respectively.
An astonishing feature of the NSW is that the predictions for the max-

imum runup are identical to those of the LSW, when identical boundary
conditions are specified at X0 = cot β. The maximum runup according to
LSW is the maximum value attained by the wave amplitude at the initial po-
sition of the shoreline, while the maximum runup is given by the maximum
value of the amplitude at the evolving shoreline η(xs, λ), where xs is the
x-coordinate of the shoreline tip and corresponds to σ = 0. Carrier (1966)—
without reflection—and Synolakis (1987)—including reflection—have shown
that the linear and nonlinear theory produce mathematically identical pre-
dictions. Nonlinear analytical evolution of solitary wave with H = 0.0185
over a sloping beach of 1:19.85 is given in Fig. A4.

2.1.4 Initial value problem The nonlinear evolution of a wave over
a sloping beach is theoretically and numerically challenging due to the mov-
ing boundary singularity. Yet, it is important to have a good estimate of
the shoreline velocity and associated runup–rundown motion, since they are
crucial for the planning of coastal flooding and of coastal structures. As
explained in the previous section, Synolakis (1987) solved this problem as a
boundary value problem considering canonical bathymetry. Kânoğlu (2004)
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Figure A4: Time evolution of H = 0.0185 initial wave over a sloping beach with cotβ = 19.85 from t = 25
to 65 with 10 increments. Constant depth-segment starts at X0 = 19.85. While markers show experimental
results of Synolakis (1986, 1987), solid lines show nonlinear analytical solution of Synolakis (1986, 1987).
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Figure A5: Definition sketch for the initial value problem.

solved nonlinear evolution of any given wave form over a sloping beach as an
initial value problem (Fig. A5). It is proposed that any initial waveform can
first be represented in the transform space using the linearized form of the
Carrier–Greenspan transformation for the spatial variable, then the nonlin-
ear evolutions of these initial waveforms can be directly evaluated. Later,
Kânoğlu and Synolakis (2006) solved the similar problem considering a more
general initial condition, i.e., initial wave with velocity.

Kânoğlu (2004) considers NSW equations (A3) with slightly different
nondimensionalization than (A2), i.e., using the reference length l̃ as a scal-
ing parameter, the dimensionless variables are introduced as

x =
x̃

l̃
, (h, η) =

(h̃, η̃)

l̃ tan β
, u =

ũ√
g̃ l̃ tan β

, and t =
t̃√

l̃/(g̃ tan β)
. (A25)

Using the original Carrier–Greenspan transformation—without cot β co-
efficient in (A20) and (A21)—it is possible to reduce the NSW equations to
the following single second-order linear equation the same as (A22):

σφλλ − (σφσ)σ = 0, (A26)

using the Riemann invariants of the hyperbolic system (Carrier and Green-
span, 1958). The Carrier–Greenspan transformation not only reduces the
nonlinear shallow water-wave equations into a second-order linear equation,
but also fixes the instantaneous shoreline to σ = 0 in the (σ, λ)-space as
explained previously. Furthermore, a bounded solution at the shoreline com-
bined with a given initial condition in terms of a wave profile at λ = 0 in the
(σ, λ)-space, η(σ, 0) implies the following solution in the transform space,

φ(σ, λ) = −
∫ ∞

0

∫ ∞

0

1
ω
ξ2Φ(ξ)J0(ωσ)J1(ωξ) sin(ωλ)dωdξ, (A27)

where Φ(σ) = uλ(σ, 0) = 4ησ(σ, 0)/σ. Further, given the initial waveform



NOAA tsunami numerical model standards 29

η(σ, 0), the evolution of the water-surface elevation is now given by

η(σ, λ) =
1
4
φλ − 1

2
u2

= −1
4

{∫ ∞

0
ξ2Φ(ξ)

[∫ ∞

0
J0(ωσ)J1(ωξ) cos(ωλ)dω

]
dξ

}

− 1
2

{∫ ∞

0
ξ2Φ(ξ)

[∫ ∞

0

J1(ωσ)
σ

J1(ωξ) sin(ωλ)dω
]

dξ
}2

,(A28)

where, again, Φ(σ) = 4 ησ(σ, 0)/σ.
Since it is important for coastal planning, simple expressions for shoreline

runup–rundown motion and velocity are useful. Considering the shoreline
corresponds to σ = 0 in the (σ, λ)-space, (A28) reduces to the following
equation for the runup–rundown motion:

ηs(λ) = η(0, λ) =
1
4
φλ − 1

2
u2

s

= −1
4

{∫ ∞

0
ξ2Φ(ξ)

[∫ ∞

0
J1(ωξ) cos(ωλ)dω

]
dξ

}

− 1
2

{∫ ∞

0
ξ2Φ(ξ)

[∫ ∞

0

1
2
ωJ1(ωξ) sin(ωλ)dω

]
dξ

}2

. (A29)

Here us and ηs represent shoreline velocity and motion, respectively. The
singularity of the u = φσ/σ at the shoreline (σ = 0) is removed with the
consideration of the limσ→0 [J1(ωσ)/σ] = 1

2ω.
The difficulty of deriving an initial condition in the (σ, λ)-space is over-

come by simply using the linearized form of the hodograph transformation
for a spatial variable in the definition of initial condition. It is proposed that
any initial waveform can first be represented in the transform space using
the linearized form of the Carrier–Greenspan transformation for the spa-
tial variable ((A21) without cot β coefficient), then the nonlinear evolutions
of these initial waveforms can be directly evaluated. Once an initial value
problem is specified in the (x, t)-space as η(x, 0), the linearized hodograph
transformation x ∼= 1

16σ
2 is used directly to define the initial waveform in the

(σ, λ)-space, η( 1
16σ

2, 0). Thus Φ(σ) = 4ησ( 1
16σ

2, 0)/σ is found, and φ(σ, λ)
follows directly through a simple integration, as in (A28). Then it becomes
possible to investigate any realistic initial waveform such as Gaussian and
N-wave shapes employed in Carrier et al. (2003) and the isosceles and gen-
eral N-waves defined by Tadepalli and Synolakis (1994). Again, solution in
the physical space can be found using the Newton–Raphson algorithm pro-
posed by Synolakis (1987) and later used by Kânoğlu (2004), as presented
in (A24a, b).

The shoreline runup-rundown motion and velocity are presented for one
of the initial profiles given by Carrier et al. (2003):

η(x, 0) = H1 exp(−c1(x− x1)2) −H2 exp(−c2(x− x2)2). (A30)

The following initial profile can be obtained in the transform space after
using the linearized form of the transformation for the spatial variable:

η(σ, 0) ≈ H1 exp(− 1
256

c1(σ2 − σ2
1)

2) −H2 exp(− 1
256

c2(σ2 − σ2
2)

2), (A31)
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Figure A6: (a) The leading-depression initial waveform (A30) presented by Carrier et al. (2003) with H1

= 0.006, c1 = 0.4444, x1 = 4.1209, H2 = 0.018, c2 = 4.0, and x2 = 1.6384 (solid line) compared with the one
resulting from approximation (evaluated through (A28)) (dots), (b) shoreline wave height, and (c) shoreline
velocity.

which leads to the definition of the initial condition Φ(σ):

Φ(σ) = − 1
16
H1 c1 (σ2 − σ2

1) exp(− 1
256

c1(σ2 − σ2
1)

2)

+
1
16
H2 c2 (σ2 − σ2

2) exp(− 1
256

c2(σ2 − σ2
2)

2). (A32)

Figure A6a compares the initial waveforms defined in the physical space
as in (A30) with the one resulting from the approximation of it, i.e., (cal-
culated through (A28)). The linearized form of the spatial variable in the
definition of the initial waveforms gives satisfactory comparison. Figures
A6b and A6c present the shoreline runup–rundown motion and velocity, re-
spectively, calculated from equation (A29) using the corresponding parts.
It should be added that the solution presented here cannot be evaluated
when the Jacobian of the transformation, J = xσ tλ − xλ tσ, breaks down.
Even though the transformation might become singular at certain points,
the solution can still be obtained at other points, since local integration can
be performed without prior knowledge of the dependent variables, unlike in
numerical methods. This feature is discussed in detail in Synolakis (1987)
and Carrier et al. (2003), and is not explained further in here.

2.2 Solitary wave on composite beach

Most topographies of engineering interest can be approximated by piecewise-
linear segments allowing the use of LSW to determine approximate analytical
results for the wave runup of more complicated waveforms, in closed form.
In principle, fairly complex bathymetry can be represented through a com-
bination of positive and/or negative segments and constant-depth segments.
Solutions of the LSW (A4) at each segment can be matched analytically at
the transition points between the segments, and then the overall amplifica-
tion factor and reflected waves can be determined, analytically. We consider
here an application to check this assertion with a complex topography con-
sisting of three segments and a vertical wall (Fig. A7). Laboratory data
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Figure A7: Definition sketch for Revere Beach. Not to scale. Transition points
and segments are numbered from shoreward to seaward, i.e., segment numbers 1, 2,
3, and 4 show 1/13, 1/150, 1/53, and constant-depth segments, transition points 1,
2, and 3 show transition points between 1/13 and 1/150, 1/150 and 1/53, and 1/53
and constant-depth segment, respectively.

exist for this topography from a U.S. Army Corps of Engineers, Coastal En-
gineering Research Center, Vicksburg, Mississippi experiment of wave runup
on a model of Revere Beach, Massachusetts. This beach profile and the lab-
oratory data are discussed in greater detail in Yeh et al. (1996), Kânoğlu
(1998), and Kânoğlu and Synolakis (1998). The profile of the model consists
of three piecewise-linear slopes of 1:13 (1st segment), 1:150 (2nd segment),
and 1:53 (3rd segment) from shoreward to seaward. At the shoreline there is
a vertical wall. In the laboratory experiments, to evaluate the overtopping
of the seawall, the wavemaker was located 23.22 m and tests were done at
two depths, at 18.8 cm and at 21.8 cm.

Kânoğlu (1998) and Kânoğlu and Synolakis (1998) associated constant-
depth segment of depth hr with the matrix:

Dpr =

⎡
⎣ e

− iωxp√
hr e

iωxp√
hr

ie
− iωxp√

hr −ie
iωxp√

hr

⎤
⎦ , (A33)

and the linearly varying depth region with positive slope mr is associated
with the matrix:

Qpr =

[
J0(2ω

√
hp/mr) Y0(2ω

√
hp/mr)

J1(2ω
√
hp/mr) Y1(2ω

√
hp/mr)

]
. (A34)

Above, in equations (A33) and (A34), the first subscript p identifies the
transition point, and the second subscript r identifies the segment, i.e., if a
segment has two transition points, there are two associated 2 × 2 matrices.
Here nondimensional quantities are defined as in (A2) using the depth of the
4th segment h̃4 as the characteristic length scale.

Using (A33) and (A34), continuities of water surface elevation and its
spatial derivative at the transition points lead to the following matrix equa-
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tions:

Q11V1 = Q12V2, Q22V2 = Q23V3, and Q33V3 = D34V4, (A35)

for each transition point. Here column vectors Vr = [Vr1, Vr2]
T identify

unknowns for each segment. One additional condition must be consid-
ered at the vertical wall, i.e., perfect reflection. Boundary condition at
the wall requires V1 to be a column vector considering perfect reflection,
i.e., Qw =

[
1,−J1(2ω

√
hw/m1)/Y1(2ω

√
hw/m1)

]T . V1 = QwV11 with hw is
the dimensionless water depth at the wall. Combining (A35) with perfect
reflection gives

QwV11 = Q−1
11 Q12Q

−1
22 Q23Q

−1
33 D34V4. (A36)

To evaluate time histories of the surface elevation, the following integral
must be evaluated

ηr(x, t) =

+∞∫

−∞
Φ(ω)

1
V41

⎧⎨
⎩

Vr1J0(
2ω
√

hr(x)

mr
) + Vr2Y0(

2ω
√

hr(x)

mr
)

V41e
− iωx√

h4 + V42e
iωx√

h4

⎫⎬
⎭ e−iωtdω,

(A37)

where r = 1, 2, 3 and V41 and V42 represents incident and reflected wave
amplitudes, respectively. The temporal variation of the water surface eleva-
tion can be calculated through (A37) evaluating the unknowns in terms of
V41 through (A36) and (A35).

More interestingly, following analysis of Synolakis (1986) the maximum
runup of solitary waves over Revere Beach can be calculated analytically
given Φ(ω) as in (A9). The amplitude at the shoreline is

R(t) = η(0, t) = −(4/3)
m1

π
√
hw

∫ +∞

−∞

cosech(αω)eiω(Xs−X3−t)

ϕ(ω) + iψ(ω)
dω. (A38)

Here ϕ(ω) + iψ(ω) is a complicated but determinable quite easily from ex-
pression (A35) and (A36) in terms of Bessel functions of zero and first or-
der, using symbolic mathematical tools. Kânoğlu (1998) conjectured that
ϕ(z) + iψ(z) is an entire function in the upper half plane, and derived the
Laurent series expansion and its asymptotic form as

R(t) = 8h−1/4
w H

+∞∑
n=1

(−1)n+1nX n, (A39)

where X = e
− π

α
(Xs−X3−t+2{

√
h1−

√
hw

m1
+

√
h2−

√
h1

m2
+

√
h3−

√
h2

m3
})
. This is a power

series of the form
∑

(−1)n+1nX n and its maximum is equal to 1/4. Therefore
the maximum runup for solitary waves propagating up Revere Beach is given
by the runup law,

R = 2h−1/4
w H. (A40)
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Figure A8: Comparison of maximum runup values for the linear analytical solution
(A39) and laboratory results for two different depths, i.e., d̃ = 18.8 cm and d̃ =
21.8 cm.

The runup law above suggests that the maximum runup only depends on
the depth at the seawall fronting the beach, and it does not depend on any
of the three slopes in front of the seawall. The runup law (A40) predicts the
nonbreaking data surprisingly well (Fig. A8).

Note that no Jacobian regularization conditions as yet exist for wave
evolution on composite beaches, and this theory can only be applied with
caution. For lack of a better method, it is recommended that a limiting
height be determined for applying this methodology on a composite beach,
by finding the limiting height for the single beach with slope equal to the
least steep slope in the composite topography under consideration. This
practice will produce adequate validity thresholds for bathymetries such as
Revere Beach, but it should not be used when abrupt changes in bathymetry
exist. In most cases, for the range of wave-steepness and beach slopes rele-
vant in tsunami studies, this method will give good results with fairly small
computational effort.

2.3 Subaerial landslide on simple beach

Liu et al. (2003) considered tsunami generation by a moving slide on a uni-
formly sloping beach, using the forced linear shallow water-wave equation as
in Tuck and Hwang (1972);

∂2η

∂t2
− tanβ

μ

∂

∂x
(x
∂η

∂x
) =

∂2h0

∂t2
, (A41)
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in the dimensionless form. Here z = η(x, t) is the free surface elevation and
z = −h(x, t) the sea floor. On a sloping beach h(x, t) = H(x)−h0(x, t) with
H(x) = x tan β/μ; tanβ is the beach slope, h0(x, t) is the time-dependent
perturbation of the sea floor with respect to the uniformly sloping beach,
δ̃ and L̃ are the maximum vertical thickness of the sliding mass and its
horizontal length, respectively, and μ = δ̃/L̃. Normalization is done as

(η, h,H, h0) =
(η̃, h̃, H̃, h̃0)

δ̃
, x =

x̃

L̃
, and t =

t̃√
δ̃/g̃/μ

. (A42)

Here again quantities with tilde represent dimensional quantities. The fo-
cus is on thin slides where μ = δ̃/L̃ � 1. Since the shallow water-wave
assumption requires that tanβ � 1, then tanβ/μ ∼ O(1).

Consider a translating Gaussian shaped mass, initially at the shoreline
as in Liu et al. (2003), i.e., the seafloor can be described by h0(x, t) =
exp

[
− (ξ − t)2

]
with ξ = 2

√
μx/ tan β. Once in motion, the mass moves

at constant acceleration. Solution of (A41) under this translating Gaussian
shape is given as

η(ξ, t) =
∫ ∞

0
J0(ρξ)ρ

[
a(ρ) cos(ρt) +

1
ρ
b(ρ) sin(ρt)

]
dρ+

1
3
(h0 − ξ

∂h0

∂ξ
),

(A43)

in Liu et al. (2003) with

a(ρ) =
∫ ∞

0
ςJ0(ρς)

[
−1

3
(h0 − ξ

∂h0

∂ξ
)
∣∣∣∣
t=0, ξ→ς

dς, (A44)

b(ρ) =
∫ ∞

0
ςJ0(ρς)

[
1
3
(2
∂h0

∂t
+ ς

∂2h0

∂ξ∂t
)
∣∣∣∣
t=0, ξ→ς

dς. (A45)

Two specific examples are presented in Figs. A9 and A10. Maximum runup
estimates, maximum wave height at x = 0, from the analytical solution
(A43) and the numerical solution of Liu et al. (2003) are given in Fig. A11.

3 Laboratory benchmarking

As a preamble, and before describing the benchmark laboratory tests, waves
are generated in the laboratory by moving vertical paddles. While other gen-
eration methods exist, hydraulic paddles allow for the precise and repeatable
specification of arbitrary trajectories. In one-dimensional wave channels—
also known as wave flumes and sometimes wave tanks—there is usually only
one paddle, perpendicular to the water surface. As the paddle displaces hor-
izontally, free-surface waves are generated. In two dimensional wave basins,
there are often multiple paddles that can move horizontally. The experi-
ments to be described were conducted in wave basins with multiple paddles.
This kind of generator is known as the snake generator. When the pad-
dles move independently, its motion resembles the ophite motion of a snake.
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Figure A9: Spatial snapshots of the analytical solution at four different times for a beach slope, β = 5◦,
and landslide aspect ratio, μ = 0.05 (tanβ/μ = 1.75). The slide mass is indicated by the light shaded area,
the solid beach slope by the black region, and η by the solid line (Liu et al., 2003).
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Figure A11: Maximum runup as a function of log(tanβ/μ). The analytical so-
lutions are shown by the solid line, and the various symbols are from NLSW sim-
ulations of Liu et al. (2003), corresponding to different slopes ranging from 2◦ to
20◦.

They are also known as Directional Wave Spectrum Generators (DWSGs).
In the U.S., such DWSGs exist at the Coastal and Engineering Laboratory
of the U.S. Army Corps of Engineers in Vicksburg, Mississippi, at the Texas
A&M University in College Station, Texas, and at Oregon State University
in Corvallis, Oregon.

Here five sets of experiments will be described in detail for laboratory
benchmarking data: solitary wave experiments on a 1:20 sloping beach (Syn-
olakis, 1987), solitary wave runup over a composite beach (Kânoğlu, 1998;
Kânoğlu and Synolakis, 1998), conical island experiments (Liu et al., 1995;
Kânoğlu, 1998; Kânoğlu and Synolakis, 1998), and tsunami runup onto a
complex three-dimensional beach (Takahashi, 1996), and tsunami genera-
tion and runup due to three-dimensional landslide (Liu et al., 2005).

3.1 Solitary wave on a simple beach

In this set of experiments, the 31.73 m-long, 60.96 cm-deep, and 39.97 cm-
wide California Institute of Technology, Pasadena, California wave tank was
used with water at varying depths. The tank is described by Hammack
(1972), Goring (1978), and Synolakis (1986, 1987). The bottom of the
tank consisted of painted stainless steel plates. Carriage rails run along
the whole length of the tank, permitting the arbitrary movement of instru-
ment carriages. A ramp was installed at one end of the tank to model the
bathymetry of the canonical problem of a constant-depth region adjoining
a sloping beach. The ramp had a slope of 1:19.85. The ramp was sealed to
the tank side walls. The toe of the ramp was distant 14.95 m from the rest
position of the piston generator used to generate waves.
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A total of more than 40 experiments with solitary waves running up the
sloping beach were performed, with wave depths ranging from 6.25 cm to
38.32 cm. Solitary waves are uniquely defined by their maximum height H̃
to depth d̃ ratio and the depth, i.e., H̃/d̃ and d̃ are sufficient to specify the
wave. H̃/d̃ ranged from 0.021 to 0.626. Breaking occurs when H̃/d̃ > 0.045,
for this particular beach. This is the same set of experiments used to validate
the maximum runup analytical predictions presented in section A2.1.1.

Initial location, Xs in the analytical consideration (A8), changes with
different wave heights. The reason Xs distance varies is that solitary waves
of different heights have different effective “wavelengths.” A measure of
the “wavelength” of a solitary wave is the distance between the point xf

on the front and the tail xt where the local height is 1% of the maxi-
mum, i.e., η(xf , t = 0) = η(xt, t = 0) = (H̃/d̃)/100. The distance Xs is
at an offshore location where only 5% of the solitary wave is already over
the beach, so that scaling can work. Therefore, in the laboratory experi-
ments initial wave heights are identified at a point Xs = X0 + (L/2) where

L/2 = (1/γ) arccosh
√

20 with γ =
√

3(H̃/d̃)/4. In the laboratory, even soli-
tary waves can dissipate. If the wave height is measured far offshore and
used as an initial condition for non-dissipative numerical models, the com-
parisons will be less meaningful, as the solitary wave will slightly change as it
propagates in the laboratory. By keeping the same relative offshore distance
for defining the initial condition, meaningful comparisons are assured.

While only 10 wave gages were used in each experimental run, the gener-
ation was extremely repeatable. As experiments were repeated for each wave
height, the wave gages were moved to different locations, and the same H̃/d̃
wave was generated again until a sufficient number of data points existed to
resolve the entire wave profile. In Synolakis (1987) two different comparisons
are presented: one is the amplitude variation at specific x-locations, and the
second is the amplitude variation at specific t-times, the latter resembling
the image that a photograph from the side with a large depth of field and
angular range would show.

This set of laboratory data has been used extensively for code validation:
refer to Synolakis (1987), Zelt (1991), Titov and Synolakis (1995, 1997,
1998), Titov and González (1997), Grilli et al. (1997), Li and Raichlen (2000,
2001, 2002). In particular, the data sets for the H̃/d̃ = 0.0185 (Fig. A4)
nonbreaking and H̃/d̃ = 0.3 (Fig. A12) breaking solitary waves seem the
most often used and most appropriate for code validation.

3.2 Solitary wave on a composite beach

Revere Beach is located approximately 6 miles northeast of Boston in the
City of Revere, Massachusetts. To address beach erosion and severe flooding
problems, a physical model of the beach was constructed at the Coastal
Engineering Laboratory of the U.S. Army Corps of Engineers, Vicksburg,
Mississippi facility, earlier known as Coastal Engineering Research Center.

The model consists of three piecewise-linear slopes of 1:53, 1:150, and
1:13 from seaward to shoreward. At the shoreline there is a vertical wall
(Fig. A7). In the laboratory, to evaluate the overtopping of the seawall,
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Figure A12: Time evolution of H = 0.3 initial wave over a sloping beach with cotβ = 19.85 from t = 10
to 30 with 5 increments. Constant-depth segment starts at X0 = 19.85. Markers show a different realization
of experimental results of Synolakis (1987).
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the wavemaker was located at 23.22 m and tests were done at two depths,
at 18.8 cm and at 21.8 cm. Water surface elevations were measured with
10 wave gages, and LDV measurements were performed at two different
locations. The maximum runup on the vertical wall was measured visually.

In the experiments, solitary waves of different heights were generated,
and the runup variation for solitary waves striking a vertical wall was deter-
mined experimentally. The results were used as benchmark data to validate
1+1 numerical codes in the 1995 Friday Harbor, Seattle, Washington work-
shop, as discussed in Yeh et al. (1996), and by Kânoğlu (1998) and Kânoğlu
and Synolakis (1998) in validating their analytical formulation.

In terms of specific measurements, time histories of the water surface
elevations exist for H̃/d̃ = 0.038 at x̃= 12.22 m, H̃/d̃ = 0.259 at x̃= 13.96 m,
and for H̃/d̃ = 0.681 at x̃ = 14.37 m. These are the locations where the
solitary waves of the given H̃/d̃ are centered for the same reason explained for
the solitary wave experiments over a 1:19.85 beach. In all cases, d̃ = 21.8 cm.
x̃ = 0 is at one end of the wave flume, i.e., the initial shoreline where the
vertical wall is at x̃ = 23.22 m. Other water-surface elevation time series
were measured midway in each sloping segment, i.e., at x̃ = 17.22 m and
d̃= 17.7 cm, at x̃= 20.86 m and d̃= 12.5 cm and x̃= 22.80 m and d̃= 8.1 cm.
Time histories of water surface elevations are given in Figs. A13, A14, and
A15 for three different wave heights. The measured maximum runup values
are given in Table A1 for the three cases presented here. Maximum runup
measurements for the whole experiments are presented in Fig. A8.

Table A1: Maximum runup measurements on
the laboratory model of Revere Beach.

H̃/d̃ R̃ R̃/d̃

0.038 2.7 cm 0.13
0.259 45.7 cm 2.10
0.681 27.4 cm 1.26

When modeling these experiments, care is needed in calculations in the
near-wall region. As the depth goes to zero, the wave breaks closer to the
shoreline. The breaking wave collapses on the wall, and the air void explodes
producing a splash which cannot be modeled effectively, except with very
high resolution codes.

3.3 Solitary wave on a conical island

Motivated by the catastrophe in Babi Island, Indonesia (Yeh et al., 1994),
during the 1992 Flores Island tsunami, large-scale laboratory experiments
were performed at Coastal Engineering Research Center, Vicksburg, Missis-
sippi, in a 30 m-wide, 25 m-long, and 60 cm-deep wave basin (Fig. A16).
Waves were realistically created in the tank by a horizontal wave generator
with 60 different paddles each 46 cm-wide and moving independently. These
experiments provided runup observations for validating numerical models
and supplemented comparisons with analytical results (Kânoğlu and Syno-
lakis, 1998).
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Figure A16: View of conical island (top) and basin (bottom).

The detailed experiments are described elsewhere in greater detail (Liu
et al., 1995; Briggs et al., 1995; Kânoğlu, 1998; Kânoğlu and Synolakis,
1998). Briefly, a Directional Spectral Wave Generator (DSWG), located
at x̃ = 12.96 m from the island, generated waves with an initial solitary
wave-like profile. The 27.42 m-long DSWG consists of sixty 46 cm-wide and
76 cm-high individual paddles, each of which can be driven independently.
This allowed performance of experiments with different wave crest lengths.
However, the cases presented here were performed using all the paddles.
Experimental results for different wave crest lengths are given in Briggs et
al. (1995) and Kânoğlu (1998).

In the physical model, a 62.5 cm-high, 7.2 m toe-diameter, and 2.2 m
crest-diameter circular island with a 1:4 slope was located in the basin
(Fig. A17). Experiments were conducted at two different water depths,
32 cm and 42 cm, but presented here with dimensionless solitary wave heights
H̃/d̃ equal to 0.045, 0.091, and 0.181 at 32 cm. Each experiment was re-
peated at least twice and maximum runup heights around the perimeter of
the island were measured at 24 locations. Wavemaker signals were presented
in Fig. A19 for these cases to allow direct implementation of these solitary
waves as a wavemaker motion in the numerical models. Water-surface time
histories were measured with 27 wave gages located around the perimeter of
the island (Fig. A18). However, here, time histories of the surface elevation
around the circular island are given at four locations, i.e., in the front of the
island at the toe and gages closest to the shoreline with the numbers 9, 16,
and 22 located at the 0◦, 90◦, and 180◦ radial lines, respectively (Figs. 20
and 21).

These experiments were used as benchmark tests for validating 2+1 nu-



42 Synolakis et al.

  220

 720

 32
 42

 62.5
 464

 
  384

Figure A17: Definition sketch for conical island. All dimensions are in cm. Not
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Figure A24: Bathymetric profile for experimental setup for Monai Valley experi-
ment.

merical codes in the 1995 Friday Harbor, Seattle, Washington Long-Wave
Runup Models Workshop (Yeh et al., 1996).

3.4 Tsunami runup onto a complex three-dimensional beach; Monai
Valley

The Hokkaido-Nansei-Oki tsunami of 1993 that struck Okushiri Island, Japan,
with extreme runup height of 30 m and currents of the order of 10–18 m/sec
was a disaster, but provided fortuitous high-quality data. The extreme tsu-
nami runup mark was discovered at the tip of a very narrow gulley within
a small cove at Monai. High resolution seafloor bathymetry existed before
the event and when coupled with bathymetric surveys following the event
allowed meaningful identification of the seafloor deformation.

A 1/400 laboratory model of Monai was constructed in a 205 m-long, 6 m-
deep, and 3.5 m-wide tank at Central Research Institute for Electric Power
Industry (CRIEPI) in Abiko, Japan and partly shown in Fig. A24. The
laboratory setup closely resembles the actual bathymetry. The incident wave
from offshore, at the water depth d̃ = 13.5 cm is known. There are reflective
vertical sidewalls at ỹ = 0 and 3.5 m (Fig. A25). The entire computational
area is 5.448 m × 3.402 m, and the recommended time step and grid sizes
for numerical simulations are Δ̃x = Δ̃y = 1.4 cm and Δ̃t = 0.05 sec.

The input wave is a LDN with a leading-depression height of −2.5 mm
with a crest of 1.6 cm behind it (Fig. A26). Waves were measured at
thirteen locations and complete time histories are given at three locations,
i.e., (x̃, ỹ) = (4.521, 1.196), (4.521, 1.696), and (4.521, 2.196) in meters
(Fig. A27). These experiments were used in the 2004 Catalina Island, Los
Angeles, California NSF Long-Wave Runup Models Workshop.
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Figure A28: Picture of part of the experimental setup.

3.5 Tsunami generation and runup due to three-dimensional land-
slide

As discussed, landslide wave generation remains the frontier in terms of
numerical modeling, particularly for aerial slides. These involve not only
the rapid change of the seafloor, but also the impact of the slide on the
shoreline. Details and more experimental results can be found in Liu et al.
(2005).

Large-scale experiments have been conducted in a wave tank with a
104 m-long, 3.7 m-wide, and 4.6 m-deep wave channel with a plane slope
(1:2) located at one end of the tank; part of the experimental setup is shown
in Fig. A28. A solid wedge was used to model the landslide. The triangular
face had a horizontal length of b = 91 cm, a vertical face with a height of
a = 45.5 cm, and a width of w = 61 cm (Fig. A29). The horizontal surface of
the wedge was initially positioned either a small distance above or below the
still water level to reproduce a subaerial or submarine landslide. The block
was released from rest, abruptly moving downslope under gravity, rolling on
specially designed wheels (with low friction bearings) riding on aluminum
strips with shallow grooves inset into the slope. The wedge was instrumented
with an accelerometer to accurately define the acceleration-time history and
a position indicator to independently determine the velocity and position
time histories. Wedge positions are given in Fig. A30 for the two cases
presented here.

A sufficient number of wave gages were used to determine the seaward
propagating waves, the waves propagating to either side of the wedge, and
for the submerged case, the water surface-time history over the wedge. In
addition, the time history of the runup on the slope was accurately measured.
Time histories of the surface elevations and runup measurements for two
cases are presented in Figs. A31 and A32 for the submerged cases with
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Table A2: Fault parameters of DCRC-17a.

Subfault North Central South

Width (km) 25 25 25
Length (km) 90 30 24.5
Strike (deg) 188 175 163
Dip angle (deg) 35 60 60
Slip angle (deg) 80 105 105
Depth (km) 10 5 5
Dislocation (m) 5.71 2.50 12.00
Origin (◦) 139.40◦E 41.13◦N 139.25◦E 42.34◦N 139.30◦E 42.10◦N
M0 (×1027 dyn cm) 3.85 0.56 2.21

Δ = −0.025 m and Δ = −0.1 m, respectively. While a total of more
than 50 experiments with moving wedges, hemispheres, and rectangles were
conducted, the wedge experiments were used as benchmark tests in the 2004
Catalina Island, Los Angeles, California workshop.

4 Field benchmarking

Verification of a model in a real-world setting is an important part of an
operational model validation. No analytical or laboratory data comparisons
(or any limited number of tests, for that matter) can assure robust model
performance in the operational environment. Test comparisons with real-
world data provide an additional important step in the validation of a model
to perform well during operational implementation.

4.1 Okushiri Island

Okushiri Island, Japan, data was the benchmark problem for the 2nd Inter-
national Long-Wave Runup Models Workshop, Friday Harbor, Washington
(Takahashi, 1996). The magnitude Ms = 7.8 Hokkaido Nansei-Oki, Japan,
earthquake occurred on 12 July 1993 with the hypocenter located at 37 km
depth at 42.76◦N and 139.32◦E off the southwestern coast of Hokkaido,
Japan. The Disaster Control Research Center (DCRC), Japan, digitized
the bathymetric and topographic data from several sources (Fig. A33).

DCRC constructed initial wave profile DCRC-17a with 4.9 m and 2.2 m
uplift and 1.1 m subsidence (depression) as shown in Fig. A34 and given
in Table A2. There are several observations which need to be explained by
numerical modeling:

• Arrival of the first wave to Aonae 5 min after the earthquake should be
estimated with the numerical model. Also, a numerical model should
reveal two waves at Aonae approximately 10 min apart; while the first
wave came from the west, the second wave came from the east. In
addition, two tide gage records at Iwanai and Esashi given in Fig. A35
need to be estimated.

• Maximum runup distribution around Okushiri Island should compare
well with the field measurements (Fig. A36). High runup height at
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Figure A29: Schematic of the experimental setup.
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Figure A30: Time histories of the block motion for the submerged case with
Δ = −0.025 m and −0.1 m.
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Figure A33: Bathymetric data provided by the Disaster Control Research Center,
Japan.

Hamatsumae, located to the east of Aonae, needs to be explained since
Hamatsumae is sheltered against the direct attack of the tsunami by
the Aonae point. Also, topography does not suggest any tsunami am-
plification mechanism at this location.

• The highest runup of 31.7 m in a valley north of Monai needs to be
approximated with the numerical model (Fig. A37).
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Figure A36: Maximum runup measurements around Okushiri Island.
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4.2 Rat Islands tsunami

Observation data from the expanding tsunami observation network will con-
tinue to provide more data for model verification. NOAA’s National Geo-
physical Data Center (http://www.ngdc.noaa.gov/seg/hazard/tsu.
shtml), NOAA’s Tsunami Warning Centers (http://wcatwc.arh.noaa.
gov/), and NOAA’s Center for Tsunami Research websites provide updated
information on the latest tsunami data. Here, we present the data used for
the first real-time model forecast test as an example of data use for model
verification.

The magnitude Mw = 7.8 earthquake was located on the shelf near Rat
Islands, Alaska, on 17 November 2003 and generated a tsunami. This tsu-
nami provided good data for testing operational models, since the tsunami
was detected by three tsunameters located along the Aleutian Trench and
was recorded at many coastal locations (Titov et al., 2005). This was the
first real-time tsunami detection by the newly developed tsunameter system
(DART). In addition, for the first time, tsunami model predictions were ob-
tained during the tsunami propagation, before the waves had reached many
coastlines. Here, the combined use of tsunami propagation and inundation
models is required for simulation of tsunami dynamics from generation to
inundation. The test requires matching the propagation model data with
the DART recording to constrain the tsunami source model (Fig. A38). If a
finite-difference method on a structured grid is used, several nested numerical
grids would allow “telescoping” from a coarse-resolution propagation model
into a high-resolution inundation model with a model grid of at least 50 m
resolution. If an unstructured grid method is used, a single grid may include
enough resolution near the coast. The data-constrained propagation model
should drive the high-resolution inundation model of Hilo Harbor. The inun-
dation model is to reproduce the tide gage record at Hilo (Fig. A39). Since
this benchmarking is required for the forecasting models, it is essential to
model 4 hr of Hilo Harbor tsunami dynamics in 10 min of computational
time.
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