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Tsunamis are long waves that evolve substantially,
through spatial and temporal spreading from their
source region. Here, we introduce a new analytical
solution to study the propagation of a finite strip
source over constant depth using linear shallow-water
wave theory. This solution is not only exact, but
also general and allows the use of realistic initial
waveforms such as N-waves. We show the existence of
focusing points for N-wave-type initial displacements,
i.e. points where unexpectedly large wave heights
may be observed. We explain the effect of focusing
from a strip source analytically, and explore it
numerically. We observe focusing points using
linear non-dispersive and linear dispersive theories,
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analytically; and nonlinear non-dispersive and weakly nonlinear weakly dispersive theories,
numerically. We discuss geophysical implications of our solutions using the 17 July 1998
Papua New Guinea and the 17 July 2006 Java tsunamis as examples. Our results may also
help to explain high run-up values observed during the 11 March 2011 Japan tsunami, which
are otherwise not consistent with existing scaling relationships. We conclude that N-waves
generated by tectonic displacements feature focusing points, which may significantly amplify
run-up beyond what is often assumed from widely used scaling relationships.

1. Introduction
The devastating effects of tsunamis, near- and far-field, became widely recognized following
the 2004 Boxing Day tsunami. Run-up measurements over the periphery of the Indian Ocean
showed considerable variation in near- and far-field impact. This variation, while it can be
inferred from direct numerical simulations of the evolution of the initial wave, remains largely
counterintuitive [1].

Once generated, tsunamis evolve substantially through spreading as seen in figure 1, for the
2011 Japan event similar to the 2004 tsunami. In their map of global propagation patterns of
the 26 December 2004 tsunami, Titov et al. [4] observed two main factors affecting directionality:
the configuration of the source region [5] and the waveguide structure of mid-ocean ridges [6].
Continental shelves also act as waveguides [7] and likely caused the persistent ringing for the
Pacific coasts of South and North America in the 2004 tsunami. Similar effects were observed
during the 2010 Chilean and the 2011 Japan tsunamis; in both cases, strong currents persisted in
California ports for days [8,9].

Most studies of past tsunamis have concentrated on modelling specific historic or scenario
events and have invariably focused on numerically estimating coastal effects and devastation.
The standard practice is for initial conditions to be established directly from estimates of the
seismic parameters, then their subsequent evolution is deterministic. Coastal inundation involves
often supercritical overland flow depths [10,11], as observed in the numerous videos of the
11 March 2011 Japan tsunami, and remains the most temperamental aspect of computations, as
small coastal features affect flooding patterns to first order [12].

It is thus not surprizing why analyses of directivity and focusing in the open ocean remain few.
During the 2011 Japan tsunami, Guam, 2750 km from the source, experienced maximum run-up
of less than 0.60 cm, while in Irian Jaya, 4500 km away, the reported run-up reached 2.6 m. It is
our objective here to supplement the few existing substantive studies of the physics of deep-sea
evolution of tsunamis and suggest that observations that are counterintuitive may be explainable
through the classic field theory.

Tsunamis triggered by submarine earthquakes have a finite crest (strip) length, which is
believed to be calculable adequately from estimates of the seismic parameters and scaling
relationships. The initial profile is dipole-shaped, directly reflecting regions of uplift and
subsidence of the seafloor, yet the generated wavefield exhibits finger-like radiation patterns, a
process often referred to as directivity. Ben-Menahem [13] defined a directivity function using the
source length and the rupture velocity. Later, Ben-Menahem & Rosenman [14] used linear theory
to calculate the radiation pattern from an underwater moving source and showed that tsunami
energy radiates primarily at a direction normal to a rupturing fault. Okal et al. [15] reported
field observations of the 1946 Aleutian tsunami in the far-field, and concluded that a large slow
earthquake and a landslide must have occurred concurrently to have caused the observed far-field
distribution and near-field run-up. Okal [16] then identified differences in directivity patterns
between tsunamis from landslides and dislocations.

Directivity arguments alone, however, cannot explain the complexity of the radiated patterns
in oceans with trenches and seamounts. Berry [17] discovered how such underwater features
may concentrate tsunamis into cusped caustics, causing large local amplifications at specific focal
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Figure 1. Amapwithmaximumwave amplitudes for the 11March 2011 Japan tsunami based on a real time forecast [2] using the
nonlinear shallow-water wave equations solverMOST [3]. Colour-filled contours show predictedmaximum tsunami amplitudes
in deep water. The green star shows the earthquake epicentre location.

points. He used linear dispersive theory that describes fairly accurately the evolution of tsunamis
in the open ocean. Nonlinear effects become important only as the tsunami evolves over near
shore topography, through shoaling and refraction.

In our analysis, we will not develop exact results for onland inundation; when needed to
model few interesting past events, we will use numerical methods to calculate the run-up. We
note that, in terms of 1+1 dimensional run-up, Synolakis [18] developed an exact solution to both
linear and nonlinear shallow-water theory for the canonical problem of a non-periodic long wave
climbing up a beach. Synolakis & Skjelbreia [19] then discussed the evolution of the maximum
during shoaling. Carrier & Yeh [20] developed an analytical solution based on the methodology
defined by Carrier [21] to evaluate the propagation of finite crest length sources of Gaussians over
flat bathymetry and discussed the directivity. Their solution involves computation of complete
elliptic integrals of the first kind, with singularities, as also in Carrier et al. [22], a difficulty
subsequently resolved by Kânoğlu [23] and Kânoğlu & Synolakis [24]. Moreover, in its current
form, the Carrier & Yeh [20] model can only be used for Gaussians, and cannot even be applied
for more standard long wave models such as solitary waves. Their solution can be extended for
N-waves by superposing Gaussians, but the calculation of the singular integrals is challenging
and involves approximations.

We note that Tadepalli & Synolakis [25] proposed a paradigm change for analytical studies
of the impact of long waves and introduced N-waves as more realistic initial waveforms
for tsunamis. Indeed, the initial waveform of real tsunamis is dipole-shaped, with leading-
elevation or -depression waves depending upon the polarity of the seafloor deformation and the
observation location. Marchuk & Titov [5] described the process of tsunami wave generation by
rectangular positive and negative initial ocean surface displacements, and their results suggested
unusual amplification.

http://rspa.royalsocietypublishing.org/
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In summary, we will first present a new general analytical solution for the linear shallow
water-wave equation for propagation of a finite crest length source without any restriction on
the cross section of the initial profile, i.e. Gaussian, solitary or N-waves, and without singular
elliptic integrals [26]. We will then show that focusing points exist for N-wave-shaped sources and
persist in the corresponding dispersive solutions. Last, we will apply our analytical solution to the
17 July 1998 Papua New Guinea (PNG), the 17 July 2006 Java and the 11 March 2011 Japan events
to explain some extreme run-up observations.

We will then examine focusing and large local amplification, not by considering the effects of
underwater diffractive lenses, which anyway are calculable since Berry [17], but by considering
the dipole nature of the initial profile. We do not of course purport to explain specific patterns
of real transoceanic tsunamis, but only suggest that, in addition to the Berry focusing from
bathymetric lenses, large amplification might result from focusing dependent on the shape and
orientation of the initial wave.

We note that our analytical solution is not intended to replace numerical models that are
inadvertent for identifying the impact of scenario events or historic tsunamis. Just as analytical
results for idealized problems help establish the scaling of natural phenomena, far easier than
repeated numerical computations over large parameter ranges, our basic wave theory analysis
helps interpret puzzling field observations.

2. Analytical solution
We use the linear shallow-water wave equation to describe a propagation problem over a constant
water depth d as a governing equation. In terms of the free surface elevation η∗(x∗, y∗, t∗), the
dimensional governing equation is

η∗
t∗t∗ − gd(η∗

x∗x∗ + η∗
y∗y∗) = 0, (2.1)

where g is the gravitational acceleration. Dimensionless variables are introduced as

(x, y) = (x∗, y∗)
l0

, η = η∗

d0
and t = t∗

t0
. (2.2)

Here, l0(d0) = d and t0 = l0/
√

gd0 =√
d/g are the characteristic length (the depth), and the time

scales, respectively. The dimensionless form of the governing equation then takes the form

ηtt − ηxx − ηyy = 0, (2.3)

with an initial surface profile η(x, y, t = 0) = η0(x, y) and zero initial velocity ηt(x, y, t = 0) = 0.
The Fourier transform pair over the space variables (x, y) is

η̂ =
∫∞

−∞

∫∞

−∞
η e−i(kx+ly)dx dy and η = 1

(2π)2

∫∞

−∞

∫∞

−∞
η̂ ei(kx+ly)dk dl, (2.4a,b)

where η̂ = η̂(k, l, t), η = η(x, y, t), and k and l are the wave numbers in the x and y directions,
respectively. We transform the governing equation (2.3) into

η̂tt + (k2 + l2)η̂ = 0, (2.5)

and the initial conditions to η̂(k, l, t = 0) = η̂0(k, l) and η̂t(k, l, t = 0) = 0, using (2.4a). The solution of
(2.5) under these conditions is now straightforward; η̂(k, l, t) = η̂0(k, l) cos ωt where ω =

√
k2 + l2.

Back-transformation through (2.4b) gives

η(x, y, t) = 1
(2π)2

∫∞

−∞

∫∞

−∞
η̂0(k, l) ei(kx+ly) cos ωt dk dl. (2.6)
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Figure 2. Definition sketch: (a) three-dimensional and (b) top views. Not to scale.

We express the finite-crested initial waveform as the product of two independent functions,

η0(x, y) = f (x)g(y), (2.7)

as in Carrier & Yeh [20]. Here, f (x) describes the transverse extent of the initial wave profile,
g(y) represents the streamwise cross section of the source, such as a solitary wave or an N-wave
(figure 2). Representation of the initial wave in the form of (2.7) is advantageous, because it allows
evaluation of the Fourier transforms of f (x) and g(y) independently;

η̂0(k, l) =
∫∞

−∞

∫∞

−∞
f (x)g(y) e−i(kx+ly)dx dy

=
[∫∞

−∞
f (x) e−ikxdx

] [∫∞

−∞
g(y) e−ilydy

]
= f̂ (k)ĝ(l). (2.8)

Unlike Carrier & Yeh [20], who used Gaussians, we prefer hyperbolic functions to define lateral
cross-sectional profiles g(y) such as solitary or N-waves. We also use a hyperbolic function in the
transverse direction to define finite crest length f (x), i.e.

f (x) = 1
2 [tanh γ (x − x0) − tanh γ (x − (x0 + L))]. (2.9)

In (2.9), x0 is the starting point of the source and L is its crest length, as shown in figure 2.
The parameter γ in (2.9) is determined by the lateral cross section of the initial wave; it is either
γ = γs for solitary waves or γ = γn for N-waves. The factor 1

2 is included so that the amplitude of
f (x) is equal to unity, in the limit x0 −→ −∞ and x0 + L −→ +∞, for a given γ . In that case, the
problem reduces to a single propagation direction, and (2.7) represents an infinitely long source.
Given that

∫∞

−∞
tanh γ x e−ikx dx = −i

π

γ
cosech

π

2γ
k, (2.10)

(see appendix A for details), the transform of (2.9) takes the following form:

f̂ (k) = i
π

2γ
(e−ikL − 1) e−ikx0 cosech

π

2γ
k. (2.11)

Spectra for cross-sectional profiles g(y) have been given by Synolakis [18] for solitary waves,
and in Tadepalli & Synolakis [25] for generalized N-waves. A solitary wave with amplitude H can
be described by gs(y) = Hsech2γs(y − y0) with γs = √

3H/4. Its transform is given by Synolakis [18]

http://rspa.royalsocietypublishing.org/
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as ĝs(l) = (4π/3)le−ily0 cosech αsl, with αs = π/(2γs). Consequently, an initial finite crest wave with
solitary wave cross section can be described with

ηs(x, y) = H
2

[tanh γs(x − x0) − tanh γs(x − (x0 + L))] sech2γs(y − y0), (2.12)

and its transform by

η̂s(k, l) = i
4π

3
αsl(e−ikL − 1) e−i(kx0+ly0) cosech αsk cosech αsl. (2.13)

The generalized N-wave profile is defined by Tadepalli & Synolakis [25] as gn(y) = εH(y −
y2) sech2γn(y − y1), where ε is a scaling parameter which ensures that the initial wave amplitude
is H. The steepness of the wave is controlled by the parameter p0 in γn =√

3Hp0/4. The locations
of depression and elevation parts of an N-wave are controlled by y1 and y2. The transform of the
generalized N-wave is given by Tadepalli & Synolakis [25] as ĝn(l) = (4εH/π)α2

n e−ily1 [(y1 − y2)l +
i(1 − αnl coth αnl)] cosech αnl1 with αn = π/(2γn). As a result, an initial finite crest wave with an
N-wave cross section is

ηn(x, y) = εH
2

[tanh γn(x − x0) − tanh γn(x − (x0 + L))]

× (y − y2) sech2γn(y − y1), (2.14)

with the corresponding transform,

η̂n(k, l) = i
4εH
π

α3
n(e−ikL − 1) e−i(kx0+ly1)[(y1 − y2)l + i(1 − αnl coth αnl)]

× cosech αnk cosech αnl. (2.15)

In appendix B, we revisit the so-called axisymmetric water wave problem analysed by Carrier &
Yeh [20], then their extension to the finite crest length solution, and we address shortcomings of
their solution.

In addition, we follow the linear dispersive analytical solution of Kervella et al. [27] for the
potential flow equation.2 The solution is similar to (2.6) except the dispersion relation and it is
given by

η(x, y, t) = 1
(2π)2

∫∞

−∞

∫∞

−∞
η̂0(k, l) ei(kx+ly) cos � t dk dl, (2.16)

where � = √
ω tanh ω, and, again η̂0(k, l) = f̂ (k)ĝ(l) with ω =

√
k2 + l2.

3. Results and discussion
In what follows, we will use realistic initial wave profiles to show the existence of focusing points.
Then, we will discuss possible consequences of focusing points for the 17 July 1998 PNG, the 17
July 2006 Java and the 11 March 2011 Japan tsunamis. We will then compare our results obtained
with linear non-dispersive theory with results from linear dispersive, nonlinear non-dispersive
and weakly nonlinear weakly dispersive theories.

When a typical N-wave initial source (figure 3a) propagates over a constant depth, the initial
wave profile splits into two outgoing waves as presented in figure 3b,c, i.e. leading-elevation
N-wave (LEN) and leading-depression N-wave (LDN). This is consistent with the inferences
of Tadepalli & Synolakis [25,28] and also with field observations, for example, those after the
26 December 2004 Great Sumatran tsunami. In Male, Maldives the tsunami manifested itself
as an LEN, as elsewhere to the west of the Sumatran subduction zone. In Phuket, Thailand,

1Note that Tadepalli & Synolakis [25] give ĝn(l) = (4εH/π)α2
n e−ily1 [(y1 − y2)l − i(1 − αnl coth αnl)] cosech αnl, because of the

choice of Fourier transform pair.
2Instead, a variant of shallow-water wave theory which captures the effect of dispersion to the lowest order of the Boussinesq

approximation [21] can also be used, i.e. ηtt − ηxx − ηyy − 1
3 (ηxx + ηyy)tt = 0. It produces almost identical results as the potential

flow solution.
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Figure 3. Definition sketch for focusing. Evolution of anN-wave source over a constant depth calculated using theMOSTmodel;
(a) initial wave, (b,c) evolution, and (d) maximum amplitude at each grid point.

it manifested itself as an LDN, as elsewhere to the east of the subduction zone [29]. More
interestingly, however, as the LEN and LDN travel in opposite directions, in the path of the
LDN, a positive wave from the centre of elevation part and two positive waves from the sides of
depression arrive simultaneously at a point along the bisector line, as shown in figure 3b,c. This
is the focusing point, and in its vicinity abnormal tsunami wave height is observed (figure 3d).

We now study specific N-wave initial source with H = 0.001, L = 30, p0 = 15, y1 = 0, y2 =
2.3 and ε = 0.04 and compare two (1 spatial + 1 temporal)- and three (2 spatial + 1 temporal)-
dimensional propagation results in figure 4. In both cases, LDN and LEN propagate in opposite
directions. However, while two-dimensional propagation results show that the initial wave
splits into two waves with identical elevation and depression heights propagating in opposite
directions, as expected from classic linear wave theory, three-dimensional propagation produces
waves propagating with different elevation and depression heights in each direction, along
the bisector. Moreover, because of focusing, the wave height increases at first on the leading-
depression side, and then decreases monotonically. On the leading-elevation side, the decay
is monotonous.

In addition, we compare analytical solutions of linear non-dispersive (2.6) with linear
dispersive (2.16) theories, and with numerical solutions of nonlinear non-dispersive (MOST) and
with weakly nonlinear weakly dispersive3 (Zhou et al. [30]) theories (figure 5). The focusing

3By weakly nonlinear, we mean the model which retains the lowest-order nonlinear terms. Similarly, weakly dispersive refers to
the model that considers the lowest-order dispersive terms.
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Figure 4. (a) Two- and (b) three-dimensional evolution of an N-wave (top insets) with H = 0.001, L= 30, p0 = 15, y1 =
0, y2 = 2.3, and ε = 0.04 (for the two-dimensional case ε = 0.07) over a constant depth. Time evolution results for two-
and three-dimensional propagations are given at t = 20 and t = 60, including maximumwave envelopes—maximumwave
height for the entire time at each spatial location—(thick lines). Note that the three-dimensional results are given along the
x-bisector line. (Online version in colour.)

points persist in predictions using all four approximations of the governing equations of
hydrodynamics, and the differences among the four are almost indiscernible, in these parameter
ranges of geophysical interest.

(a) The 17 July 1998 Papua New Guinea tsunami
We now consider the 17 July 1998 PNG tsunami, an iconic catastrophe that brought into
worldwide attention the impact of submarine landslides [31]. A crucial feature for the landslide
hypotheses was the unusually high run-up values observed over a fairly small coastal area, an
observation which led to the development of source discriminants [32]. We will now suggest that
the extreme run-up values might have also been due to focusing of the LDN.

We used the landslide source suggested by Synolakis et al. [31], with an initial wave of
approximately −18 m depression followed by the +16 m elevation, and source length of L = 1,
as shown in figure 6a, and present the maximum wave height distribution over the entire flow
field in figure 6b. Focusing is apparent, manifesting itself as a second local maximum, the global
being the maximum of the initial waveform.

In figure 6c, we present the maximum wave height envelopes along different directions for
the wave propagating into the leading-depression side, where we observe the focusing points in
each direction. Sissano Lagoon was the area with the maximum impact where the maximum
number of casualties was reported. This region is approximately r = 25 km away from the
source, between 30◦ and 45◦ from the source orientation close to the 30◦ radial line (figure 6d).
As seen from figure 6c, along 30◦, the shoreline would face a wave 1.4 times larger than if
the region was r = 50 km away. Using the run-up variation of Kânoğlu [23], also implied by
Tadepalli & Synolakis [25], where R ∼ H3/4, the equivalent run-up on the target shoreline could
be 1.3 times greater.

We then investigate the effect of the source crest length (L) has on the location and amplitude of
the focusing point (figure 6e). As L increases, the focusing point moves further away, as expected,
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since focusing is an effect of the finite crest length. Overall, the maximum wave height along the
leading-depression wave side is higher than along the direction of the leading-elevation wave
side, at any point past the focusing point. Also, increasing L up to a certain value increases the
maximum wave height at the focusing points, then it is constant. In figure 6f, we present the effect
of the steepness parameter over the location of the focusing point and the maximum wave height
value at the focusing point. Decreasing the wave steepness translates the focusing point further
away. However, it does not change the maximum wave heights at the focusing points.

In addition, we investigate the effects nonlinearity and dispersion have on focusing points,
using the PNG initial condition as a test case. When the initial wave is steep (p0 = 15), the
wave is more dispersive, and we observe a slight increase of the maximum at the focusing
point in dispersive solutions (figure 7). However, all four approximations of shallow-water wave
theory—linear non-dispersive, linear dispersive, nonlinear non-dispersive, weakly nonlinear
weakly dispersive—produce almost identical results when p0 = 2, as seen in figure 8.

(b) The 17 July 2006 Java, Indonesia tsunami
The magnitude Mw 7.8, 17 July 2006 earthquake off the south coast of Western Java, Indonesia
generated an unexpectedly large tsunami. The tsunami affected over the 300 km of the coastline
with over 600 casualties. A pronounced run-up peak exceeding 20 m was measured at Permisan
(figure 9a), although overall run-up values ranged from 5 to 7 m at surrounding areas [33]. They
inferred that the focused run-up heights were suggestive of a local submarine slump or mass
movement, following the invariants presented by Okal & Synolakis [32]. Here, we suggest another
explanation for such a pronounced run-up.
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andε = 4.93. Dimensionless quantities are calculatedusing the referencedepth 1600 m. (b) Overallmaximum:maximumwave
amplitude at each grid point calculated using MOST. (c) Maximum wave amplitude envelopes along the β = 0◦–60◦ lines,
with 15◦ increments. r originates from the point where the maximum initial wave height is located, i.e. (x, y) = (50, 52.5) in
inset (a). Dots indicate locations of focusing points. (d) The initial N-wave is located at (x∗, y∗) = (27, 34) km and is tilted 5◦

to be consistent with Synolakis et al. [31]. Sissano Lagoon, where most of the damage was observed, is located approximately
r = 25 km away from the initial wave location between the 30◦ and 45◦ lines. Triangles over the 30◦ and 45◦ lines show the
focusing points when p0 = 5. (e) Maximum wave height envelopes for the source lengths L= 1 (solid line), 10 (dashed line),
20 (dash-dotted line) and 30 (dotted line). Triangles represent MOST numerical results. (f ) Maximum wave height envelopes
p0 = 2 (dash-dotted line), 5 (dashed line) and 15 (solid line). When p0 and L are parametrized,ε is modified to ensure the same
maximumwave amplitude as the original initial wave profile.
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As discussed in the previous section, a wave from the centre of the elevation side and two
waves from the sides of the depression (shown by the arrows in figure 9b) arrive simultaneously
at the focusing point. Therefore, we consider Permisan as the approximate focal point, and we
present reverse tsunami travel time (RTTT) contours, i.e. the time it will take for a source over
a contour to reach the specific shoreline point, Permisan in this case (figure 9b). Over the RTTT
plot, we also included the tsunami source functions from the propagation database of the United
States National Oceanic and Atmospheric Administration’s Center for Tsunami Research (NCTR).
Detailed explanation of the NCTR’s tsunami propagation database and its application to real-time
forecasting can be found in Tang et al. [2] and Wei et al. [34].

We thus identified a scenario where positive waves from the centre of the elevation part of the
source and boundaries of the depression part arrive simultaneously and fit the RTTT contours
well. The arrival time is approximately 40 min, consistent with accounts of eyewitnesses [33], as
shown in figure 9b.

We then used MOST with its Community Interface for Tsunamis (ComMIT) [35] to simulate
the Javan tsunami with the proposed source over the real bathymetry/topography and found
the maximum wave amplitudes as shown in figure 9c. Because of limited bathymetric and
topographic data for the region, it was not possible to make satisfactory computations to evaluate
the run-up distribution along the shoreline. The model results suggest approximately 5 m run-up
at Permisan. However, our computations over a constant depth bathymetry clearly shows that
Permisan is close to a focusing point, and possibly the unusual run-up partly explainable with
classic field theory rationalizations.
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(c) The 11 March 2011 Japan tsunami
Finally, we examine whether focusing amplified the coastal effects of the 2011 Japan tsunami
using the source distribution identified in real time by Tang et al. [2]. We note that, as to the time
of this writing, the unusually high run-up in Northern Japan remains unexplained, with some
having already suggested a co-seismic landslide. In figure 10a, we show the maximum wave
height distribution and also included maximum wave height contours from propagation of the
wave over a constant depth of 5000 m. This is done to exclude bathymetric focusing effects. The
results presented in figure 10a reveal that focusings occur just in front of the shorelines where
maximum run-up heights were measured (figure 10b).

4. Conclusions
We considered three-dimensional long wave propagation over a constant depth basin. We
solved the linear shallow-water wave equation as an initial value problem subject to realistic
initial conditions, such as N-waves. We showed the existence of focusing point for evolution of
dipole sources.

We then discussed unusually pronounced run-up observations from recent events which
might have been exasperated by focusing, using the 1998 PNG and the 2006 Java tsunamis as
particular examples. Our results strongly imply that focusing increases the shoreline amplification
of the tsunami. Moreover, as shown in the Javan case, our methodology was useful in identifying
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Figure 9. (Overleaf.) (a) Field run-up and wave height measurements from the 17 July 2006 Java tsunami given by Fritz et al.
[33] (red dots denote observed tsunami heights (m), blue dots denote observed run-up values (m)). (b) RTTT contours for
Permisan (red-filled triangle). Three of the NCTR’s 100 × 50 km2 tsunami source functions (white rectangles) are presented
as a possible source mechanism considering focusing. The arrows indicate approximate locations of a positive wave from the
centre of the elevation part and twopositivewaves from the sides of the depression,which arrive simultaneously to the focusing
point (red-filled triangle) over the same RTTT contour. (c) Colour-filled contours show themaximumwave height at each spatial
location for propagation of the proposed source over real bathymetry and topography. The black contours showmaximumwave
heights frompropagation of the proposed source over 3000 m constant depth bathymetry. The green stars show the earthquake
epicentre location in each subfigure.
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Figure 10. (a) Maximum wave amplitudes (colour-filled contours) at the coast of Honshu after 11 March 2011 tsunami using
MOST with NCTR’s real time source for the event [2,36]. Black contour lines show maximum wave amplitude contours if
the proposed tsunami source propagated over a constant depth of 5000 m. (b) Comparison of computed tsunami maximum
amplitudes on land based on tsunami source constrained from deep-ocean tsunamimeasurements [36] andmeasured tsunami
heights and run-up values [37] (black dots denotemodel maximum amplitudes (m), red dots denote observed tsunami heights
(m), blue dots denote observed run-up values (m)).

the tsunami generation mechanisms considering the focusing location and tsunami travel times.
Also, preliminary examination of the field survey data and analysis of the 25 October 2010
Mentawai Islands, Sumatra, Indonesia tsunami [38] suggests a similar focusing effect. We
additionally presented initial modelling results for the 11 March 2011 Japan tsunami as indicative
of possible focusing.
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We note that the three-dimensional focusing identified here supplements the focusing by
bathymetric lenses proposed by Berry [17] and points to a very rich and complex evolutionary
process for long waves in the ocean. While for most practical applications, numerical solutions
will be used, event-specific computations can seldom help identify basic wave phenomena.
Both focusing mechanisms suggest extreme care when attempting to further regularize ill-posed
seismic inversions from run-up measurements, using simplistic multiplicative factors to scale
sources. Furthermore, our analysis suggests that the occurrence of extreme run-up at a given
locale should not always automatically lead to the inference of offshore landslides, at least not
before focusing is eliminated.

Ending, we dedicate this paper to the memory of the late Prof. D. H. Peregrine. In the first
meeting of the Tsunami Risk and Strategies for the European Region (TRANSFER) project,
which was supported by the European Union, he suggested that it would be useful to compare
numerical solution results with an analytical solution for three-dimensional spreading, so that
dispersive characteristics of numerical schemes can be investigated. We thus suggest that the
analytical solution developed here could also be used as a benchmark, in addition to the analytical
solutions presented in Synolakis et al. [39] for establishing the veracity of the rapidly multiplying
newly minted tsunami numerical models.
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Appendix A.
∫∞

−∞ tanh γ x e−ikx dx
We split

∫∞
−∞ tanh γ x e−ikx dx into real and imaginary parts, i.e.

∫∞

−∞
tanh γ x e−ikx dx =

∫∞

−∞
tanh γ x cos kx dx − i

∫∞

−∞
tanh γ x sin kx dx, (A 1)

to evaluate the Fourier transform of f (x), equation (2.9). The first integral on the right-hand side
(r.h.s.) vanishes as the integrand is an odd function evaluated over a symmetric interval. The
second integral has an even integrand, hence, (A 1) reduces to

∫∞

−∞
tanh γ x e−ikx dx = −2 i

∫∞

0
tanh γ x sin kx dx. (A 2)

The integral on the r.h.s. is the Fourier sine integral of tanh γ x and it is readily available in integral
tables, or can easily be evaluated by using computer algebra systems such as Mathematica as

∫∞

0
tanh γ x sin kx dx = π

2γ
cosech

π

2γ
k, (A 3)

provided Re γ > 0, which is satisfied for the present problem. Hence,
∫∞

−∞
tanh γ xe−ikx dx = −i

π

γ
cosech

π

2γ
k. (A 4)
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Appendix B. Comparison with the solution of Carrier & Yeh [20]
Carrier & Yeh [20] first developed an analytical solution for axisymmetric waves—single Gaussian
humps—in order to analyse the directivity of finite crest sources. They chose as characteristic
length and depth scales the source breadth l0 = W—breadth of the Gaussian hump or elongated
hump—and the source amplitude d0 = H (figure 2) and the time scale t0 = W/

√
gd. The

dimensionless form of the governing equation (2.1) is the same as (2.3), with this scaling. Carrier &

Yeh [20] introduced the change of variable r =
√

x2 + y2 and obtained the axisymmetric equation

ηtt − 1
r
(rηr)r = 0, (B 1)

from (2.3). They developed an axisymmetric solution to (B 1) using a Gaussian hump η(r, t = 0) =
2 e−r2 = 2 e−(x2+y2) with zero initial velocity ηt(r, t = 0) = 0, as

η(r, t) =
∫∞

0
ρJ0(ρr) e−ρ2/4 cos ρt dρ. (B 2)

However, they observed that the resultant integral becomes inconvenient to compute for large
distances (r) and times (t), although it is well behaved for small values of r and t. Hence, following
Carrier et al. [22], they expressed the solution as

η(r, t) = ∂

∂t

∫∞

0
2 e−ρ2

G(ρ, r, t) dρ, (B 3)

with

G(ρ, r, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
π

ρ√
t2 − (r − ρ)2

K
(

4rρ
t2 − (r − ρ)2

)
t > r + ρ,

1
π

√
ρ

r
K

(
t2 − (r − ρ)2

4rρ

)
|r − ρ| < t < r + ρ,

0 t < |r − ρ|,

(B 4)

where K(k) = ∫π/2
0 dν/

√
1 − k sin2 ν is the complete elliptic integral of the first kind. They showed

that the solution of (B 1) exhibits a self-similar behaviour (t ∼ r). They further replaced the
complete elliptic integral with modified Bessel functions, through trial-and-error, using the
self-similarity of the solution. Then they extended their axisymmetric solution to an elongated
source defined by,

η0(x, y) = [erf(x0 + L − x) − erf(x0 − x)] e−y2
, (B 5)

and found the radiation pattern from a strip when t > 20, as

η(x, y, t) ∼= 1√
π

∫ x0+L

x0

(50/t)1/2ϕ

(
y2 − t2

4t
+ x2 − x′2

4t

)
dx′, (B 6)

in which

ϕ(s) ≈ −0.0238
d
ds

{
(2s2)1/4K1/4(2s2) e−2s2

s > 0,

(2s2)1/4[K1/4(2s2) + π
√

2I1/4(2s2)] e−2s2
s < 0,

(B 7)

where I1/4 and K1/4 are the modified Bessel functions of the first- and second-kind of order 1
4 ,

respectively.
With the simple methodology we presented in §2, we find an exact analytical solution which

does not resort to singular elliptic integrals for the axisymmetric problem. Given a Gaussian hump
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Figure 11. (a) The Gaussian hump initially located at the origin (r = 0) is defined by η0(r, t = 0) = 2 e−r2 = 2 e−(x2+y2).
(b) Evolution of the Gaussian hump at times t = 0.5, 1, 2, 5, 10, 20, 30, 40 and 50. The self-similarity (t ∼ r) of the solution
(B 8) can be observed for t > 5 as shown by Carrier & Yeh [20]. Solid lines and dots represent the analytical andMOST solutions,
respectively. (Online version in colour.)
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Figure 12. Time histories of water surface elevation of the elongated Gaussian source (B 5) with the crest length L= 20 are
evaluated at distances r = 20, 60 and 100 along directions (a) θ = 0◦, (b) θ = 45◦ and (c) θ = 90◦ (figure 2). Solid lines
represent results of the analytical solution (B 9) while dots represent results of MOST. The initial source (B 5) is located at
(x0, y0) = (−L/2, 0) to allow one-to-one comparison with the fig. 7 of Carrier & Yeh [20]. (Online version in colour.)

η0(x, y) = 2 e−r2 = 2 e−(x2+y2), as in figure 11a, its Fourier transform is η̂0(k, l) = 2π e−ω2/4, where
again ω =

√
k2 + l2, and thus the exact axisymmetric wave solution becomes

η(x, y, t) = 1
2π

∫∞

−∞

∫∞

−∞
e−ω2/4 ei(kx+ly) cos ωt dk dl, (B 8)

through (2.6). The time evolution of Gaussian hump is obtained from (B 8) and given in figure 11b,
which compares its results with numerical solution predictions. Our results not only show an
exact comparison with Carrier & Yeh [20] and MOST computed results, but also we had no
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Figure 13. Time histories of water surface elevation are evaluated through (B 9) for different source lengths (L= 10, 20, 40
and 60) along directions (a) normal (θ = 0◦) and (b) parallel (θ = 90◦) to the x-axis (figure 2). The source is initially located
at (x0, y0) = (0, 0) and the water surface variations are calculated at distance r = 100. This figure is adapted from fig. 8 of
Carrier & Yeh [20] using our analytical solution. (Online version in colour.)

difficulty in direct numerical integration of (B 8). In addition, we could observe the self-similarity
(t ∼ r) of the solution, exactly as used by Carrier & Yeh [20] to extend the axisymmetric wave
solution into a solution for a strip source.

The extension of our axisymmetric solution to a strip source is also straightforward. The
Fourier transform of the elongated source (B 5) used by Carrier & Yeh [20] is η̂0(k, l) =
i2

√
π e−ikx0 e−ω2/4(e−ikL − 1)/k. Thus, our solution integral is given by

η(x, y, t) = i
2π3/2

∫∞

−∞

∫∞

−∞
(e−ikL − 1)

k
e−ω2/4 ei(k(x−x0)+ly) cos ωt dk dl. (B 9)

In figure 12, we consider an elongated source with fixed length L = 20. Time series of water surface
elevation are evaluated along different angular directions (θ = 0◦, 45◦ and 90◦), through direct
numerical integration of (B 9). The effect of the source length L on wave height distribution is
demonstrated in figure 13. We let L vary, and we compute time series along directions normal
(θ = 0◦) and parallel (θ = 90◦) to x-axis. Our results are identical to those of Carrier & Yeh [20]
and are also verified through numerical modelling. Moreover, our analytical solution is simple,
yet versatile in terms of application of different initial conditions such as single humps, solitary
waves and N-waves expressed in the form of Gaussian and hyperbolic functions. Furthermore,
our solution involves no approximation and no curve fitting.
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