A TSUNAMI FORECAST MODEL FOR KIHEI, HAWAI'I

Edison Gica

Sept 15, 2011

Table of Contents

List of Tables	iii
List of Figures	iv
Abstract	
1.0 Background and Objectives	
2.0 Forecast Methodology	
3. Model Development	
3.1 Forecast area	5
3.2 Historical events and data	6
3.3 Model setup	6
4. Results and Discussion	7
4.1 Model validation	7
4.2 Model stability and reliability	
4.3 Results of tested events	
5. Summary and Conclusion	
6.0 Acknowledgments	
7.0 References	
Appendix A. MOST *.in file	
A1. Reference model *.in file for Kihei, Hawai'i	80
A2. Forecast model *.in file for Kihei, Hawai'i	80
Appendix B	
Appendix C. Forecast Model tests in SIFT system.	
C.1 Testing Procedure	
C.2 Results	

List of Tables

Table 1. MOST setup parameters for reference and forecast models for Kihei, Hawai'i. 14
Table 2. Historical events with recorded runup at Kihei, Hawai'i. mim15
Table 3. Historical events simulated for Kihei, Hawai'i. 16
Table 4. Synthetic mega-tsunamis tested for Kihei, Hawai'i. 18
Table 5. Synthetic tsunamis with $Mw = 7.5$ and 6.2 (1 case) tested for Kihei, Hawai'i. 19
Table B.1. Earthquake parameters for Aleutian-Alaska-Cascadia Subduction Zone unit sources
Table B.2. Earthquake parameters for Central and South America Subduction Zone unit sources. 90
Table B.3. Earthquake parameters for East Philippines Subduction Zone unit sources. 102
TableB.4.EarthquakeparametersforKamchatka-Kuril-Japan-Izu-Mariana-YapSubductionZone unit sources.105
Table B.5. Earthquake parameters for Manus Oceanic Convergent Boundary Subduction Zone unit sources. 117
Table B.6. Earthquake parameters for Manus Oceanic Convergent Boundary Subduction Zone unit sources. 119
Table B.7. Earthquake parameters for New Zealand-Kermadec-Tonga Subduction Zone unit sources. 121
Table B.8. Earthquake parameters for New Zealand-Kermadec-Tonga Subduction Zone unit sources. 125
Table B.9. Earthquake parameters for New Zealand-Puyseger Subduction Zone unit sources.
Table B.10. Earthquake parameters for New Zealand-Puyseger Subduction Zone unit sources. 130
Table C.1. Table of maximum and minimum amplitudes (cm) at the Kihei, Hawaii warning point for synthetic and historical events tested using SIFT 3.2 and obtained during development

List of Fig

List of Figures
Figure 1. Location of Kihei, Hawai'i
Figure 2. Plot of forecast model grid developed: a) Grid A, b) Grid B, and c) Grid C 21
Figure 3. Plot of reference model grid developed: a) Grid A, b) Grid B, and c) Grid C. 22
Figure 4. Plot of Kahului DEM
Figure 5. Location of Kihei, Hawai'i, relative to historical (upper) and mega-tsunami events (lower) simulated
Figure 6. Comparative plot of 1946 Unimak tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point
Figure 7. Comparative plot of 1957 Andreanov tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point
Figure 8. Comparative plot of 1960 Chile tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point
Figure 9. Comparative plot of 1994 East Kuril tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point
Figure 10. Comparative plot of 2003 Rat Island tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. 29
Figure 11. Comparative plot of 2006 Tonga tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point
Figure 12. Comparative plot of 2006 Kuril tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point
iv

Figure 39. Comparative plot of synthetic case EPSZ 9-18 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and

Figure 47. Comparative plot of synthetic case MOSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current

Figure 56. Comparative plot of synthetic case NVSZ 11-20 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum

Figure B.1. Aleutian-Alaska-Cascadia Subduction Zone unit sources
Figure B.2. Central and South America Subduction Zone unit sources
Figure B.3. East Philippines Subduction Zone unit sources
Figure B.4. Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources. 104
Figure B.5. Manus Oceanic Convergent Boundary Subduction Zone unit sources 116
Figure B.6. New Guinea Subduction Zone unit sources
Figure B.7. New Zealand-Kermadec-Tonga Subduction Zone unit sources 120
Figure B.8. New Britain-Solomons-Vanuatu Zone unit sources
Figure B.9. New Zealand-Puyseger Zone unit sources 127
Figure B.10. Ryukyu-Kyushu-Nankai Zone unit sources

A Tsunami Forecast

Model for Kihei, Hawai'i

Edison Gica

Abstract

The National Oceanic and Atmospheric Administration has developed a tsunami forecast model for Kihei, Hawai'i, as part of an effort to provide tsunami forecasts for United States coastal communities. Development, validation, and stability testing of the tsunami forecast model have been conducted to ensure model robustness and stability. The Kihei, Hawai'i, tsunami forecast model employs the Method of Splitting Tsunami numerical code. The forecast model was validated with 3 historical tsunamis, and the stability and reliability was tested by simulating artificial tsunamis from different source regions. A total of 13 historical cases and 41 synthetic mega-tsunami ($M_w = 9.4$) events, 20 $M_w = 7.5$, and 1 $M_w = 6.2$ were simulated, and the forecast model was stable for 24 hr. The Kihei, Hawai'i, forecast model can generate 4 hours of tsunami wave characteristics in approximately 13.22 min of CPU time.

1.0 Background and Objectives

The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research (NCTR) at the NOAA Pacific Marine Environmental Laboratory (PMEL) has developed a tsunami forecasting capability for operational use by NOAA's two Tsunami Warning Centers located in Hawai'i and Alaska (Titov *et al.*, 2005). The system is designed to efficiently provide basin-wide warning of approaching tsunami waves accurately and quickly. The system, termed Short-term Inundation Forecast of Tsunamis (SIFT), combines real-time tsunami event data with numerical models to produce estimates of tsunami wave arrival times and amplitudes at a coastal community of interest. The SIFT system integrates several key components: deep-ocean observations of tsunamis in real time, a basin-wide pre-computed propagation database of water level and flow velocities based on potential seismic unit sources, an inversion algorithm to refine the tsunami source based on deep-ocean observations during an event, and highresolution tsunami forecast models termed Forecast Models.

The town of Kihei is located on the southern coast (southwest of Haaleakalā) of Maui, Hawai'i (Figure 1). It faces the Pacific Ocean and is partially blocked by the islands of Lanai and Kahoolawe (Figure 1). With less than 13 inches of annual rain, it was referred to as "Kama'ole", meaning 'barren', by the Hawaiians. In the early 1900's, there was an effort to establish a sugar plantation but failed. With not so much to attract people to live there, the population was only 350 in 1930. Between the years 1932 to 1950, land was being sold by the government at a very low price to attract businesses and people (\$0.05 per square foot for the residential areas). Even with such an attractive price, nobody wanted to live and work in Kihei. However the situation changed between 1970 to 1980, since water from Central and West Maui was piped into the town (About.com, 2011). The town's population increased from 16,749 in year 2000 (mapzones.org) to 20,881 in year 2010 (Census, 2010). In 2000, it was ranked as the 10th most populous area in Hawai'i (mapzones.org). With a census designation land area of 10.16 square miles (26.31 km^2) , its current population density would be 2,055.2 people per square mile (793.6/km²). Kihei has great weather with an average of 276 sunny days (due to its very low annual rainfall) and temperatures ranging from 53°F (in January) to 74°F (July). The current median home cost is \$486,200 with home appreciation of -1.4% in 2010. The average household income is \$61,112 with an unemployment rate of 7.8% and a current job growth of -1.69%. The population's occupations cover a wide range, including management, business and financial operations, professional and related occupations, service, sales, farming, fishing, forestry, construction, production, transportation, and material moving. The majority of the population, 26.52%, is in the service occupation with the lowest (0.44%) in farming, fishing and forestry (BestPlaces, 2011). Higher education is available from Kapiolani Community College, Leeward Community College, Honolulu Community College, and Brigham Young University - Hawaii Campus (CityTownInfo, 2011). The Maui High Performance Computing Center, which is the US Department of Defense supercomputing resource center, and corporations like High Technology Development Corporation (High Technology Development Center, 2011) are located in Kihei. With lots of condominiums, timeshares, and rentals ranging from inexpensive to moderate rates, Kihei has become a popular attraction for tourist to enjoy Maui (About.com, 2011).

This report details the development of a tsunami forecast model for Kihei, Hawai'i. Development includes construction of a digital elevation model based on available bathymetric and topographic data, model validation with historic events, and stability tests of the model with a suite of mega-tsunami events originating from subduction zones in the Pacific Ocean.

2.0 Forecast Methodology

A high-resolution inundation model was used as the basis for development of a tsunami forecast model to operationally provide an estimate of wave arrival time, wave height, and inundation at Kihei, Hawai'i following tsunami generation. All tsunami forecast models are run in real time while a tsunami is propagating across the open ocean. The Kihei, Maui, Hawai'i model was designed and tested to perform under stringent time constraints, given that time is generally the single limiting factor in saving lives and property. The goal of this work is to maximize the length of time that the community of Kihei, Hawai'i has to react to a tsunami threat by providing accurate information quickly to emergency managers and other officials responsible for the community and infrastructure.

The general tsunami forecast model, based on the Method of Splitting Tsunami (MOST), is used in the tsunami inundation and forecasting system to provide real-time tsunami forecasts at selected coastal communities. The model runs in minutes while employing high-resolution grids constructed by the National Geophysical Data Center. The MOST is

a suite of numerical simulation codes capable of simulating three processes of tsunami evolution: earthquake, transoceanic propagation, and inundation of dry land. The MOST model has been extensively tested against a number of laboratory experiments and benchmarks (Synolakis *et al.*, 2008) and was successfully used for simulations of many historical tsunami events. The main objective of a forecast model is to provide an accurate, yet rapid, estimate of wave arrival time, wave height, and inundation in the minutes following a tsunami event. Titov and González (1997) describe the technical aspects of forecast model development, stability, testing, and robustness, and Tang *et al.*, 2009 provide detailed forecast methodology

Accurate forecasting of the tsunami impact on a coastal community largely relies on the accuracies of bathymetry and topography and the numerical computation. The high spatial and temporal grid resolution necessary for modeling accuracy poses a challenge in the run-time requirement for real-time forecasts. Each forecast model consists of three telescoped grids with increasing spatial resolution, and temporal resolution for simulation of wave inundation of dry land. The forecast model utilizes the most recent bathymetry and topography available to reproduce the correct wave dynamics during the inundation computation. Forecast models, including the Kihei, Hawai'i model, are constructed for at-risk populous coastal communities in the Pacific and Atlantic Oceans. Previous and present development of forecast models in the Pacific (Titov *et al.*, 2005; Titov, 2009; Tang *et al.*, 2009; Wei *et al.*, 2008) have validated the accuracy and efficiency of each forecast model currently implemented in the real-time tsunami forecast system. Models are tested when the opportunity arises and are used for scientific research. Tang *et al.*, 2009 provide forecast methodology details.

3. Model Development

The general methodology for modeling at-risk coastal communities is to develop a set of three nested grids, referred to as A, B, and C-grids, each of which becomes successively finer in resolution as they telescope into the population and economic center of the community of interest. The offshore area is covered by the largest and lowest resolution A-grid while the near-shore details are resolved within the finest scale C-grid to the point that tide gauge observations recorded during historical tsunamis are resolved within expected accuracy limits. The procedure is to begin development with large spatial extent merged bathymetric topographic grids at high resolution, and then optimize these grids by sub-sampling to coarsen the resolution and reduce the overall grid dimensions to achieve a 4 to 10 hr simulation of modeled tsunami waves within the required time period of 10 min of wall-clock time. The basis for these grids is a high-resolution digital elevation model constructed by the National Geophysical Data Center (NGDC) and NCTR using all available bathymetric, topographic, and shoreline data to reproduce the wave dynamics during the inundation computation for an at-risk community. For each community, data are compiled from a variety of sources to produce a digital elevation model referenced to Mean High Water in the vertical and to the World Geodetic System 1984 in the horizontal (NGDC). The author considers it to be an adequate representation of the local topography/bathymetry. As new digital elevation models become available, forecast models will be updated, and report updates will be posted at http://nctr.pmel.noaa.gov/forecast_reports/. From these digital elevation models, a set of three high-resolution "reference" elevation grids are constructed for development of a high-resolution reference model, from which an 'optimized' model is constructed to run in an operationally specified period of time. The operationally developed model is referred to as the optimized tsunami forecast model or forecast model for brevity.

Development of an optimized tsunami forecast model for Kihei, Hawai'i, began with the spatial extent merged bathymetric-topographic grids shown in Figure 1. Grid dimension extension and additional information were updated as needed and appropriate. Table 1 provides specific details of both reference model and forecast model grids, including extents, and complete input parameter information for the model runs is provided in Appendix A.

3.1 Forecast area

The town of Kihei has a census designated area of 10.16 square miles (26.31 km²) with a population of 20,881 (Census, 2010). It is located on the southern coast of Maui, Hawaii or southwest of Haaleakalā. South Kihei Road and Piilani Highway (Highway 31) are the two main roads that run roughly parallel to the coastline (Figure 1). South Kihei road runs along the coast and cuts through the town, while Piilani Highway is further east. Highway 31 is roughly within 1 to 1.5 kilometers from the coastline with the highest elevation of approximately 22 meters mean sea level (MSL). As can be seen in Figure 1, majority of the town is located west of Highway 31.

Figures 2c and 3c show the contour of the coastal area where a large portion is at an elevation 5 meters or below and roughly 1 to 1.5 kilometers from the coastline, providing a mild slope region. This is the area where businesses and population are located. Generally, the elevation slowly increases another 5 meters eastward and then quickly slopes toward the hills. A portion of the occupied area is located at the northeastern end of Highway 31 (Figure 1) and has an approximate elevation of 40 meters MSL. The Maui High Performance Computing Center is located on the central east side of Piilani Highway but on a much higher elevation of 50 meters MSL (Figure 1).

A large portion of the coast has a small coastal shelf where the water depth slowly increases to 5 meters depth (Figures 2c and 3c) and then quickly drops another 5 meters, then encounters another mild slope. Further offshore, the bathymetry gets complicated with deeper depths clustered in concentrated areas. These areas are clearly seen on the southwest areas of Figures 2c and 3c. Similar clusters are also found between 20.75°N and 20.76°N along 203.26°E. Another feature that can be noticed is along 20.76°N where there is a c-shape formed in the 10 meter contour line. The effects of this feature will be seen in the maximum current speed distribution and discussed in later sections.

3.2 Historical events and data

The Hawaiian Islands are located in the path of any tsunamis generated in the Pacific Ocean. With active subduction zones in the Pacific Basin, the potential for tsunamigenic earthquakes is high (Nishenko 1991). The Hawaiian Islands have been hit by numerous tsunamis; a few (e.g., 1946 Unimak, 1952 Kamchatka, 1957 Aleutian Islands, 1960 Chile, and 1975 Big Island tsunamis) have caused millions of dollars in damage and loss of human lives. Although historical records (Table 2) show tsunami runup in Kihei for the 1946 Unimak, 1957 Aleutian Islands, and 1960 Chilean tsunamis, there are no records of significant damage (NGDC). Although only 3 historical tsunamis were recorded, simulations will be conducted with other historical events (Table 3) to determine how it would have affected the community of Kihei.

Historical tide gauge record are not available, since no gauge has been installed. The closest tide gauge is located in Kahului Harbor on the other side of the island of Maui. The selected warning point for Kihei is at 203.540277°E, 20.747685°N with a depth of 1.74 meters (Figures 2c and 3c). Historically Kihei had not experienced significant tsunami damage, one possible reason for which could be its location. Located on the southern part of Maui, it is partially blocked by the islands of Lanai and Kahoolawe (Figure 1). Depending on the location of the tsunami source, the island blocking might not hold true all the time. This will be tested by running synthetic mega-tsunami events in the Pacific region. The more recent 2011 Honshu tsunami did cause minor flooding along the coast of Kihei.

3.3 Model setup

Normally, the high-resolution digital elevation model is constructed by the National Geophysical Data Center (NGDC) and NCTR using all available bathymetric, topographic, and shoreline data. For Kihei, Maui, Hawai'i, the high resolution Digital Elevation Model (DEM) was developed in-house by Chris Chamberlin (2007) with a grid resolution of 1/3 arc sec, coverage extent of 156.55°W, 20.65°N to 156.2°W, 21.05°N (Figure 4), and using a horizontal datum of WGS84 decimal degrees and a vertical datum of mean high water in meters. Sources of the data are from Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) Lidar, National Ocean Service, US Army Corps of Engineers, USGS Seafloor Mapping, NOAA CSC ifSAR, and Digitized NOS charts. Both reference and forecast models consist of three nested grid where the outer most grid (Grid A) covers the deep ocean region so as to capture the tsunami characteristics as it propagates in the deep ocean while the inner most grid (Grid C) covers the area outside the coral reef to capture the tsunami wave transformations in shallow water. The A and B grids for Kihei, Hawai'i are from those developed by Tang et al. (2010) to be consistent with the other inundation models developed in Hawai'i. The Cgrid is extracted from the 1/3 arc sec DEM developed in-house.

The coverage extent of the C-grid for both reference inundation model and forecast model are the same. Table 1 shows the details of the nested grid (Grids A, B, and C) including the modeling parameters used. The plots of the nested grids are shown in

Figures 2 and 3 for the forecast model and reference model, respectively. Since there is no tide gauge in Kihei, a warning point was arbitrarily selected (shown in Figures 2c and 3c) which has a coordinate of 20.747685°N, 203.540277°E and a depth of 1.74 meters.

Although the DEM used for the forecast and reference models is derived from the same source, the forecast model is an optimized version of the reference model designed to provide a quick tsunami forecast. The use of different grid resolution sometimes requires modification of the DEM to make a stable and reliable run. The difference between the DEMs used in forecast and reference model is shown in Figures 2c and 3c. Figure 3c, which is the reference grid, shows a complicated bathymetry in the deeper region (lower left area along 203.26°E), while it is much smoother in the forecast model (Figure 2c).

The forecast model, which is used for tsunami forecast during an event, is an optimized version of the high resolution inundation model. It is designed to quickly provide 4 hours of simulated tsunami wave characteristics, including a time series at the tide gauge. For the town of Kihei, Hawai'i, the forecast model can simulate a 4 hr tsunami wave characteristics in approximately 13.22 minutes (Table 1) which is beyond the 10 min requirement. The reason for this longer simulation is using a higher resolution, 1 arc sec, C grid that provides a better representation of the DEM. The high resolution inundation model, on the other hand, takes about 22.68 hours to complete a simulated run of 4 hours. Both the high resolution inundation model and forecast model were validated with historical events to check for accuracy.

4. Results and Discussion

4.1 Model validation

The development of the DEM for the high resolution reference inundation model and forecast model requires that it be validated to determine the accuracy of the simulated tsunami characteristics as waves hit the coastal areas of Kihei, Hawai'i. Historically, lots of tsunamis have occurred in the Pacific Basin (Table 2 lists tsunamis with recorded runup) and most likely have impacted Kihei, Hawai'i, considering that it is located along the path of any tsunamis generated in the Basin. Unfortunately, no tide gauge has been established on the southern part of Maui. The closest tide gauge is located in Kahului Habor, Hawai'i which is on the other side of the island of Maui. The wave characteristics at Kahului Harbor would be completely different from those at Kihei, Hawai'i. Thus, Kahului gauge cannot be used for model-to-data comparison at Kihei. However, historical records (NGDC) indicated tsunami runup at Kihei, Hawaii for three tsunamis: 1 April 1946 Unimak Island, Alaska; 9 March 1957 Andreanov Islands, Alaska; and 22 May 1960 Chilean tsunamis. The historical data of these three events will be used to validate the forecast model. Other historical events are also simulated to determine how the waves affect the coastal areas of Kihei (Table 3). The locations of these historical events relative to Kihei are plotted in Figure 5.

4.2 Model stability and reliability

The development of the forecast model also requires that the model provide a reliable forecast and should be stable enough to simulate several hours of the tsunami event. A set of reliability and stability tests was conducted by simulating synthetic events (Table 4) emanating from different regions and using different earthquake magnitudes (Mw = 9.4, 7.5, and 6.2). Since each tsunami event is unique, tests using different earthquake magnitudes and source location would indicate if the model grid developed will generate instabilities that need to be corrected. This set of tests is not exhaustive however; representative cases from select sources should be sufficient. A total of 41 artificial mega-tsunami events (Mw=9.4) were generated from twenty unit sources with a slip value of thirty meters for each unit source. Twenty cases of Mw=7.5 use one unit source with a slip of one meter, and 1 case of Mw=6.2 is to test the model for a small wave condition. The unit sources are from the propagation database developed at NCTR (Gica et al., 2008). Tests were conducted for a total of 24 hours simulation. Tables 4 and 5 list the sources used for the artificial mega-tsunamis, and Mw=7.5, and Mw=6.2, respectively. The location of the synthetic megatsunami events (Table 4) relative to Kihei, Hawai'i, are shown in Figure 5.

4.3 Results of tested events

Results of the tested events (historical and synthetic) are shown by plotting the maximum tsunami wave amplitude distribution, inundation, tsunami time series, maximum tsunami current speed distribution, current speed, and directionality. All the plots show both the forecast model and reference models. The simulated tsunami time series, current speed, and directionality are recorded at the selected warning point (Figures 2c and 3c). Comparison between the forecast and reference models for historical events are shown in Figures 6 - 18 while Figures 19 - 59 are for the synthetic mega-tsunami events. These plots show the maximum tsunami amplitude distribution, maximum tsunami current speed distribution, as well as, tsunami time series, current speed, and directionality at the warning point at C-grid level. Plots of maximum tsunami amplitude distribution show whether the coastal areas of Kihei will be inundated or not. The maximum tsunami current speed distribution plots the maximum current speed, both on sea and land as inundation occurs. The direction of the current is subdivided into four regions: West to North, South to West, East to South, and North to East. Relative to the coastline, this would indicate whether the incoming tsunami wave is advancing or retreating from the shore or moving in the along-shore direction.

A total of 13 historical cases were simulated for validation of the Kihei forecast and reference models. Since Kihei does not have a tide gauge, tsunami time series comparison are done only between the forecast and reference model, with exception for a few historical events where records of tsunami runup are available (Table 2). In all historical cases, the maximum tsunami wave amplitude for the reference model is higher than the forecast model as seen in the tsunami time series at the warning point. The first tsunami wave matches very well between the reference inundation model and forecast

model for all historical cases. The succeeding waves, though are much higher for the reference model but matches well in phase. Similarly, the current speed at the warning point is much higher for the reference model. Finer wave patterns are also seen in the reference models, which are not present in the forecast model. Another aspect that can be noticed is in the maximum current speed distribution plot (Figures 6 - 18). The southwest area of the C-grid shows slightly different maximum current speed distribution for the reference model when compared to the forecast model. This is attributed to the complex bathymetry in that region that needed modification in the forecast model to generate a stable run (Figures 2c and 3c). Overall, both maximum tsunami wave amplitude distribution and maximum current speed distribution are similar between the forecast and reference models. Inundation extent was either none or minor for all the 13 historical cases simulated.

From the historical cases simulated, NGDC has runup data for three cases (Table 2) from post-tsunami survey measurement. For the 1946 Unimak Island tsunami, the record indicated a runup height of 2.7 meters. The simulated result for this specific event produced a runup of approximately 1.78 meters for the forecast model and 1.82 meters for the reference model near the historical recorded runup. The distance from the simulated runup to the historical recorded runup is approximately 71 meters for the forecast model and 63 meters for the reference model. As for the 1957 Andreanof tsunami, historical runup indicated 2.1 meters while the simulated results indicate 1.56 meters for the forecast model and 1.68 meters for the reference model. Location of the simulated maximum runup is approximately 71 meters (forecast model) and 63 meters (reference model) away from the recorded runup location. A runup of 2.4 meters is recorded for the 1960 Chile tsunami (NGDC) while the forecast model simulated a 2.07 meters and approximately 71 meters away from the recorded data while the reference model simulated 2.36 meters and is 94 meters away from the recorded data.

The comparison of the simulated runup values with historical records for all three events (Table 2) showed that the historical records have a higher runup compared to the simulation. The simulated historical events were approximately 0.33 meter to 0.9 meter below that of the historical record and approximately 63 meters to 94 meters away. One possible reason for this discrepancy could be that the tsunami source used in the simulation is still not well-defined. For the more recent 2011 Tohoku event, several videos have been posted on youtube (www.youtube.com) which show minor flooding in Kihei. The simulated result also indicated minor flooding along the coast (Figure 18). A tsunami survey in the state of Hawai'i was conducted for the 2011 Honshu event. Field measurement data of inundation and runup can be used to validate the Kihei forecast model. However, NCTR has not yet obtained surveyed data at the time of this report. For the remaining historical events where historical data is not available, the forecast model is compared with the reference model.

The synthetic events simulated for the forecast model showed that it is both stable and reliable. Although the mega-tsunami (Mw = 9.4, Table 4) tests is not exhaustive, the results indicate which tsunami source regions would pose a threat to Kihei, Hawai'i. Of the 41 synthetic mega-tsunamis (Mw=9.4, Table 4), only 19 sources produced very minor inundation along the coast of Kihei based on the forecast model and 15 sources based on

the reference model. Figure 60 shows the locations of these low coastal impact synthetic mega-tsunami events relative to Kihei, which clearly indicate that the main tsunami energy is directed away from Kihei. Tsunami sources that have extreme coastal impact emanates from EPSZ 9-18 (Figure 39), KISZ 1-10 (Figure 40), KISZ 11-20 (Figure 41), KISZ 42-51 (Figure 43) and MOCB 1-10 (Figure 47). The inundation extent for these tsunami sources occupies a significant portion of the coastal town. The location of these extreme tsunami sources relative to Kihei is shown in Figure 61. The remaining 17 synthetic mega-tsunami events still produce significant tsunami impact and, depending on the tsunami source location relative to Kihei, for the same event, some areas are less extensive.

The plots showing the maximum tsunami amplitude distribution do not clearly show how the incoming tsunami waves interact with the coastal shelf in Kihei. This interaction is clearly seen in the maximum tsunami current speed distribution plots. The current speed is high as the incoming tsunami waves encounter the 5 meter offshore contour line of the coastal shelf. Its strength diminishes as it passes thru the coastal shelf. However, depending on where the tsunami source is located relative to Kihei, the incoming waves could either produce no inundation or extreme inundation with high current speed as it inundates the coastal areas. For synthetic mega-tsunami events (Table 4), the current speed on land is at least 5 meters/second, with an extreme case of around 10 meters/second for the EPSZ 9-18 source (Figure 39). The plot of the current directionality shows a complex pattern; the tsunami waves not only approaches and recedes from the shore, but also generates cross-currents.

5. Summary and Conclusion

A set of reference and forecast inundation models has been prepared for Kihei, Hawai'i. Both models were found to be reliable, and the comparison of the maximum tsunami wave amplitude distribution, maximum tsunami current speed, tsunami time series, current speed, and directionality at the warning point were relatively good.

Reliability of the reference and forecast inundation models were validated with three historical events. The National Geophysical Data Center has 3 records of historical runup due to tsunami in Kihei due to: 1 April 1946 Unimak Island, 9 March 1957 Andreanof, and 22 May 1960 Chilean tsunamis. Comparison with the historical records show that the simulated runup (forecast and reference models) was on average 0.52 meters less than the record and 72 meters (on average) away from the observed. This discrepancy could indicate that the source used by NCTR is still not well-defined. For the 2011 Tohoku event, both reference and forecast (Figure 18) models indicated minor flooding along the coast. Comparison with surveyed data has not been done, since NCTR had not received the data at the time when this inundation model was developed and when the report was written.

The stability tests showed that both the forecast and reference models are stable for a 24hour simulation of both historical cases and synthetic sources (Tables 4 and 5) with different earthquake magnitudes (Mw = 9.4, 7.5, and 6.2) emanating from different source regions. A total of 41 Mw = 9.4, 20 Mw = 7.5, and 1 Mw = 6.2 events were simulated. Testing with mega-tsunami events not only checks the stability of the forecast model, it can also provide information on which source regions represent the greatest tsunami threat to Kihei, Hawai'i. Of the 41 scenarios tested, 19 sources based on forecast model and 15 based on reference model produce minor inundation along the coast. Significant inundation was from 17 source scenarios and 5 extreme cases that inundated a significant portion of the coastal town.

Besides the tsunami time series at the selected warning point and distribution of the maximum tsunami wave amplitude, plots of the maximum current speed distribution and current directionality at the selected warning point are also presented. Results from the synthetic mega-tsunami events show that the current speed on land can reach at least 5 meters/second, and as high as 10 meters/second from source region EPSZ 9-18. The current direction at the selected warning point also indicates the complex pattern of the tsunami waves. The tsunami waves not only approach and retreat from the shore, but also generate cross-current along the coast.

Since the main objective of developing the Kihei, Hawai'i forecast model is for tsunami forecast, the DEM has been optimized to simulate 4 hours of tsunami wave characteristics in approximately 13.22 minutes. As presented in this report, the Kihei, Maui, Hawai'i forecast model should be able to provide a reliable forecast during an event and is stable for a 24 hours simulation. Other than being used as a forecast model in real-time events, the developed grids can also be used for hazard assessment to assist the local community in developing an evacuation plan.

6.0 Acknowledgments

This work is funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement Numbers NA10OAR4320148 and NA08OAR4320899, and is JISAO contribution number No. 2079. This work is also Contribution No. 3992 from NOAA/Pacific Marine Environmental Laboratory. The author would also like to thank Lindsey Wright (for retrieving historical tide gauge data and testing of SIFT, Appendix C) and Sandra Bigley (for comments, edits and formatting of this report).

7.0 References

About.com www.about.com, http://gohawaii.about.com/od/maui/p/kihei_maui.htm, accessed 23 August 2011.

Best Places, http://www.bestplaces.net/city/hawaii/kihei, accessed 6 September 2011.

Chamberlin, C (2007), 1/3s digital elevation model for Kahului, Maui, Hawaii, NCTR. April 27 2007, http://new-nctrd.pmel.noaa.gov/atlas/grid/Kahului%201_3s/

CityTownInfo, http://www.citytowninfo.com/places/hawaii/kihei, accessed 23 August 2011.

Gica, Edison, M.C. Spillane, V.V. Titov, C.D. Chamberlin and J.C. Newman (2008): Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo OAR PMEL139, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 89pp.

High Technology Development Corporation http://www.htdc.org/programsservices/incubation_techcenter_mrtcdirections.html, accessed 23 August 2011

Kanamori, H. and J.J. Cipar (1974): Focal process of the great Chilean earthquake May 22, 1960, Physics of the Earth and Planetary Interiors, v. 9, no. 2, pp. 128-136.

Nishenko, Stuart P. (1991): Circum-Pacific Seismic Potential: 1989-1999, Pure and Applied Geophysics, Vol. 135, No. 2, pp 169-259. MapZones mapzones.org, http://mapzones.org/Kihei Cdp Hawaii.html, accessed 23 August 2011.

National Geophysical and Data Center http://ngdc.noaa.gov/mgg/inundation/tsunami/inundation.html, accessed 1 June 2011.

Tang, L., V.V. Titov, and C.D. Chamberlin (2009): Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. *J. Geophys. Res.*, 6, doi: 10.1029/2009JC005476, in press.

Synolakis, C.E., E.N. Bernard, V.V. Titov, U. Kânoğlu and F.I. González (2008): Validation and verification of tsunami numerical models. *Pure and Applied Geophysics* 165(11-12), 2197-2228.

Tang, L., Chamberlin, C.D. and Titov, V.V. (2010): A tsunami forecast model for Hilo, Hawai'i, NOAA OAR Special Report, PMEL Tsunami Forecast Series: Vol. 1, 94 pp.

Titov, V.V. and F.I. Gonzalez (1997): Implementation and testing of Method of Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 11pp.

Titov, V.V., F.I. Gonzalez, E.N. Bernard, M.C. Eble, H.O. Mofjeld, J.C. Newman and A.J. Venturato (2005): Real-time tsunami forecasting: Challenges and solutions. Natural Hazards, 35, 41-58.

Titov, V.V. (2009): Tsunami forecasting. In *The Sea*, Vol. 15, Chapter 12, Harvard University Press, Cambridge, MA, and London, England, 371–400.

Wei, Y., E. Bernard, L. Tang, R. Weiss, V. Titov, C. Moore, M. Spillane, M. Hopkins, and U. Kânoglu (2008): Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. *Geophys. Res. Lett.*, *35*, L04609, doi: 10.1029/2007GL032250.

Youtube videos, www.youtube.com, accessed May 2011.

		R	Reference	Model		Forecast Model			
		Coverage	Cell	nx	Time	Coverage	Cell	nx	Time
		Lat. [°N]	Size	Х	Step	Lat. [°N]	Size	Х	Step
Grid	Region	Lon. [°W]	["]	ny	[sec]	Lon. [°W]	["]	ny	[sec]
٨	Hawaiian	18.0083-22.9983	26 600 - 500 2.6		3.6	18.0317-22.9983	120	210 x 150	10.0
A	Islands	199.0000-205.9799	50	099 X 300	5.0	199.0000-205.9667	120	210 x 130	10.0
B Maui	20.4000-21.3933	6	0.17×507	0.6	20.4017-21.2550	12	261 y 257	1.0	
	Waui	202.5717-204.0983	0	917 x 397	0.0	202.8967-204.0967	12	301 X 237	1.0
C	Vihai	20.7167-20.7907	1/2	202 # 200	0.2	20.7168-20.7907	1	121 - 267	1.0
C Kinei		203.5275-203.5638	1/3	393 X 800	95 X 800 0.5	203.5278-203.5636	1	151 X 207	1.0
Minimum offshore depth [m]			1.0			1.0			
Water dep	oth for dry la	nd [m]		0.1		0.1			
Friction c	riction coefficient $[n^2]$ 0.0009 0.0009								
CPU time	22.68 hours 13.22 minutes			es					

Table 1. MOST setup parameters for reference and forecast models for Kihei, Hawai'i.

Computations were performed on a dual Hex-core Intel Xeon E5670 processor at 2.936 GHz each 12M cache, Dell PowerEdge R510.

Event	Earthquake	Lat. (°)	Lon. (°)	Seismic	Tsunami Runup		Runup
	Date Time			Moment	Loca	tion ¹	height (m) ¹
	(UTC)			Magnitude			
				(Mw)	Lat. (°)	Lon. (°)	
1946 Unimak							
	1946-04-01	52.75N	163.500	8.5 ²	20.785N	156.467W	2.70
	12:28:56		W				
1957 Andreanof ³							
	1957-03-09	38.29N	175.39W	8.6 ³	20.785N	156.467W	2.10
	14:22:31.9						
1960 Chile ⁴	1960-05-22	38.29S	73.05W	9.5 ⁴	20.785N	156.467W	2.40
	19:11:17						

Table 2. Historical events with recorded runup at Kihei, Hawai'i.

¹ National Geophysical Data Center (NGDC) ² López and Okal (2006) ³ United States Geological Survey (USGS) ⁴ Kanamori and Cipar (1974)

Table 3. Historical events simulated for Kihei, Hawai'i.	
--	--

Event	Earthquake	Lat. (°)	Lon. (°)	Subduction Zone	Seismic	Tsunami	Model Tsunami Source
	Date Time				Moment	Magnitude ¹	
	(UTC)				Magnitude		
					(M w)		
1946 Unimak	1946-04-01	52.75N	163.50W	Aleutian-Alaska-Cascadia (ACSZ)	8.5 ²	8.5	7.5 x b23 + 19.7 x b24 + 3.7
	12:28:56						x b25
1957 Andreanov	1957-03-09	51.56N	175.39W	Aleutian-Alaska-Cascadia (ACSZ)	8.6 ³	8.7	31.4 x a15 + 10.6 x a16 +
	14:22:31						12.2 x a17
1960 Chile	1960-05-22	38.29S	73.050W	Central-South America (CSSZ)	9.5 ⁵		Kanamori & Cipar (1974)
	19:11:14						
1994 East Kuril	1994-10-04	43.73N	147.321E	Kamchatka-Kuril-Japan-Izu-Marian-Yap	8.3 ³	8.1	9.0 x a20
	13:22:58			(KISZ)			
2003 Rat Island	2003-11-17	51.14N	177.86E	Aleutian-Alaska-Cascadia (ACSZ)	7.7^{3}	7.8	2.81 x b11
	06:43:31.0						
2006 Tonga	2006-05-03	20.39S	173.47W	New Zealand-Kermadec-Tonga (NTSZ)	8.3 ³	8.1	4 x a12 + 0.5 x b12 + 2 x
	15:27:03.7						a13 + 1.5 x b13
2006 Kuril	2006-11-15	46.71N	154.33E	Kamchatka-Kuril-Japan-Izu-Marian-Yap	8.3 ³	8.1	4 x a12 + 0.5 x b12 + 2 x
	11:15:08.0			(KISZ)			a13 + 1.5 x b13
2007 Kuril	2007-01-13	46.17N	154.80E	Kamchatka-Kuril-Japan-Izu-Marian-Yap	8.1 ³	7.9	-3.64 x b13
	04:23:48.1			(KISZ)			
2007 Solomon	2007-04-01	8.481S	156.978E	New Britain-Solomons-Vanuatu (NVSZ)	8.1 ⁴	8.2	12.0 x b10
	20:39:56						

1 4010 01 001111400	Table 3.	continued.
---------------------	----------	------------

2007 Peru	2007-08-15	13.345S	76.509W	Central-South America (CSSZ)	8.0^{3}	8.1	0.9 x a61 + 1.25*b61+ 5.6 x
	23:40:57						a62 + 6.97 x b62 + 3.5 x z62
2009 Samoa	2009-09-29	15.509S	172.034W	New Zealand-Kermadec-Tonga (NTSZ)	8.1 ³	8.1	3.96 x a34 + 3.96 x b34
	17:48:10						
2010 Chile	2010-02-27	35.950S	73.150W	Central-South America (CSSZ)	8.8 ³	8.8	17.24 x a88 + 8.82 x a90 +
	06:35:15.4						11.86 x b88 + 18.39 x b89 +
							16.75 x b90 + 20.79 x z88 +
							7.06 x z90
2011 Tohoku	2011-03-11	38.322N	142.369E	Kamchatka-Kuril-Japan-Izu-Marian-Yap	9.0^{2}	8.8	4.66 x b24 + 12.23 x b25 +
	05:46:00			(KISZ)			26.31 x a26 + 21.27 x b26 +
							22.75 x a27 + 4.98 x b27

Scenario Name	Subduction Zone	Tsunami Source
ACSZ 1-10	Aleutian-Alaska-Cascadia	A 1-10, B 1-10
ACSZ 11-20	Aleutian-Alaska-Cascadia	A11-20, B11-20
ACSZ 21-30	Aleutian-Alaska-Cascadia	A21-30, B21-30
ACSZ 31-40	Aleutian-Alaska-Cascadia	A31-40, B31-40
ACSZ 41-50	Aleutian-Alaska-Cascadia	A41-50, B41-50
ACSZ 51-60	Aleutian-Alaska-Cascadia	A51-60, B51-60
ACSZ 56-65	Aleutian-Alaska-Cascadia	A56-65, B56-65
CSSZ 1-10	Central-South America	A 1-10, B 1-10
CSSZ 11-20	Central-South America	A11-20, B11-20
CSSZ 21-30	Central-South America	A21-30, B21-30
CSSZ 31-40	Central-South America	A31-40, B31-40
CSSZ 41-50	Central-South America	A41-50, B41-50
CSSZ 51-60	Central-South America	A51-60, B51-60
CSSZ 61-70	Central-South America	A61-70, B61-70
CSSZ 71-80	Central-South America	A71-80, B71-80
CSSZ 81-90	Central-South America	A81-90, B81-90
CSSZ 91-100	Central-South America	A91-100, B91-100
CSSZ 101-110	Central-South America	A101-110, B101-110
CSSZ 106-115	Central-South America	A106-115, B106-115
EPSZ 1-10	East Philippines	A 1-10, B 1-10
EPSZ 6-15	East Philippines	A 6-15, B 6-15
KISZ 1-10	Kamchatka-Yap-Mariana-Izu-Bonin	A 1-10, B 1-10
KISZ 32-41	Kamchatka-Yap-Mariana-Izu-Bonin	A32-41, B32-41
KISZ 32-41	Kamchatka-Yap-Mariana-Izu-Bonin	A32-41, B32-41
KISZ42-51	Kamchatka-Yap-Mariana-Izu-Bonin	A42-52, B42-51
KISZ52-61	Kamchatka-Yap-Mariana-Izu-Bonin	A52-61, B52-61
KISZ56-65	Kamchatka-Yap-Mariana-Izu-Bonin	A56-65, B56-65
KISZ 66-75	Kamchatka-Yap-Mariana-Izu-Bonin	A66-75, B66-75
MOCB 1-10	Manus OCB	A 1-10, B 1-10
MOCB 8-17	Manus OCB	A 8-17, B 8-17
NGSZ 1-10	North New Guinea	A 1-10, B 1-10

Table 4. Synthetic mega-tsunamis tested for Kihei, Hawai'i.

Table 4. continued.

NGSZ 6-15	North New Guinea	A 6-15, B 6-15
NTSZ 1-10	New Zealand-Kermadec-Tonga	A 1-10, B 1-10
NTSZ 11-20	New Zealand-Kermadec-Tonga	A11-20,B11-20
NTSZ 21-30	New Zealand-Kermadec-Tonga	A21-30, B21-30
NTSZ 30-39	New Zealand-Kermadec-Tonga	A30-39, B30-39
NVSZ 1-10	New Britain-Solomons-Vanuatu	A 1-10, B 1-10
NVSZ 11-20	New Britain-Solomons-Vanuatu	A11-20, B11-20
NVSZ 28-37	New Britain-Solomons-Vanuatu	A28-37, B28-37
RNSZ 1-10	Ryukus-Kyushu-Nankai	A 1-10, B 1-10
RNSZ 13-22	Ryukus-Kyushu-Nankai	A13-22, B13-22

Table 5. Synthetic tsunamis with Mw = 7.5 and 6.2 (1 case) tested for Kihei, Hawai'i.

Scenario Name	Subduction Zone	Tsunami Source
ACSZ 9	Aleutian-Alaska-Cascadia	B9
ACSZ 18 ¹	Aleutian-Alaska-Cascadia	B18
ACSZ 30	Aleutian-Alaska-Cascadia	B18
ACSZ 50	Aleutian-Alaska-Cascadia	B50
ACSZ 65	Aleutian-Alaska-Cascadia	B65
CSSZ 2	Central-South America	B2
CSSZ 22	Central-South America	B22
CSSZ 49	Central-South America	B49
CSZ 59	Central-South America	B59
CSSZ 84	Central-South America	B84
EPSZ 10	East Philippines	B10
KISZ 8	Kamchatka-Yap-Mariana-Izu-Bonin	B8
KISZ 15	Kamchatka-Yap-Mariana-Izu-Bonin	B15
KISZ 27	Kamchatka-Yap-Mariana-Izu-Bonin	B27
KISZ 53	Kamchatka-Yap-Mariana-Izu-Bonin	B53
MOSZ 9	Manus OCB	B9
NTSZ 19	New Zealand-Kermadec-Tonga	B19
NTSZ 36	New Zealand-Kermadec-Tonga	B36
NVSZ 23	New Britain-Solomons-Vanuatu	B23
RNSZ 11	Ryukus-Kyushu-Nankai	B11

¹ simulated an $M_w = 6.2$ case

Figure 1. Location of Kihei, Hawai'i.

Figure 3. Plot of reference model grid developed: a) Grid A, b) Grid B, and c) Grid C.

Figure 4. Plot of Kahului DEM.

Figure 5. Location of Kihei, Hawai'i, relative to historical (upper) and mega-tsunami events (lower) simulated.

Figure 6. Comparative plot of 1946 Unimak tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 7. Comparative plot of 1957 Andreanov tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 8. Comparative plot of 1960 Chile tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 9. Comparative plot of 1994 East Kuril tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 10. Comparative plot of 2003 Rat Island tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 11. Comparative plot of 2006 Tonga tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 12. Comparative plot of 2006 Kuril tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 13. Comparative plot of 2007 Kuril tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 14. Comparative plot of 2007 Solomon tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 15. Comparative plot of 2007 Peru tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 16. Comparative plot of 2009 Samoa tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 17. Comparative plot of 2010 Chile tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 18. Comparative plot of 2011 Tohoku tsunami between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 19. Comparative plot of synthetic case ACSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 20. Comparative plot of synthetic case ACSZ 11-20 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figures indicate non-inundated sections.

Figure 21. Comparative plot of synthetic case ACSZ 21-30 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 22. Comparative plot of synthetic case ACSZ 31-40 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 23. Comparative plot of synthetic case ACSZ 41-50 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 24. Comparative plot of synthetic case ACSZ 46-55 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 25. Comparative plot of synthetic case ACSZ 56-65 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 26. Comparative plot of synthetic case CSSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 27. Comparative plot of synthetic case CSSZ 11-20 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 28. Comparative plot of synthetic case CSSZ 21-30 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 29. Comparative plot of synthetic case CSSZ 31-40 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 30. Comparative plot of synthetic case CSSZ 41-50 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 31. Comparative plot of synthetic case CSSZ 51-60 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 32. Comparative plot of synthetic case CSSZ 61-70 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 33. Comparative plot of synthetic case CSSZ 71-80 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 34. Comparative plot of synthetic case CSSZ 81-90 between forecast and reference models. White areas on land for the top figure indicate non-inundated sections, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 35. Comparative plot of synthetic case CSSZ 91-100 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 36. Comparative plot of synthetic case CSSZ 101-110 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 37. Comparative plot of synthetic case CSSZ 106-115 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 38. Comparative plot of synthetic case EPSZ 01-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 39. Comparative plot of synthetic case EPSZ 9-18 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 40. Comparative plot of for synthetic case KISZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 41. Comparative plot of synthetic case KISZ 11-20 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 42. Comparative plot of for synthetic case KISZ 32-41 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 43. Comparative plot of synthetic case KISZ 42-51 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 44. Comparative plot of synthetic case KISZ 52-61 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 45. Comparative plot of synthetic case KISZ 56-65 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 46. Comparative plot of synthetic case KISZ 66-75 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 47. Comparative plot of synthetic case MOSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 48. Comparative plot of synthetic case MOSZ 8-17 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 49. Comparative plot of synthetic case NGSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 50. Comparative plot of synthetic case NGSZ 6-15 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 51. Comparative plot of synthetic case NTSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 52. Comparative plot of synthetic case NTSZ 11-20 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 53. Comparative plot of synthetic case NTSZ 21-30 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 54. Comparative plot of synthetic case NTSZ 30-39 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 55. Comparative plot of synthetic case NVSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 56. Comparative plot of synthetic case NVSZ 11-20 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 57. Comparative plot of synthetic case NVSZ 28-37 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 58. Comparative plot of synthetic case RNSZ 1-10 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point.

Figure 59. Comparative plot of synthetic case RNSZ 13-22 between forecast and reference models, a) maximum tsunami wave amplitude distribution, b) maximum current speed distribution, c) tsunami time series at the warning point, and d) current speed, and directionality at the warning point. White areas on land for the top figure indicate non-inundated sections.

Figure 60. Location of Kihei, Hawai'i, relative to simulated synthetic mega-tsunami events that generated low coastal impact.

Figure 61. Location of Kihei, Hawai'i, relative to simulated synthetic mega-tsunami events that generated extreme coastal impact.

Appendix A. MOST *.in file

Development of the Kihei, Hawai'i tsunami forecast model occurred prior to parameter changes that were made to reflect modifications to the MOST model code. As a result, the input file for running both the optimized tsunami forecast model and the high-resolution reference inundation model in MOST have been updated accordingly. Appendix A1 and A2 provide the updated files for Kihei, Hawai'i.

A1. Reference model *.in file for Kihei, Hawai'i

0.0001	Minimum amplitude of input offshore wave (m)
1	Input minimum depth for offshore (m)
0.1	Input "dry land" depth for inundation (m)
0.0009	Input friction coefficient (n**2)
1	A & B-grid runup flag (0=disallow, 1=allow runup)
300.0	Blow-up limit (maximum eta before blow-up)
0.3	Input time step (sec)
288000	Input number of steps
12	Compute "A" arrays every n th time step, n=
2	Compute "B" arrays every n th time step, n=
60	Input number of steps between snapshots
1	Starting from
1	Saving grid every n th node, n=1

A2. Forecast model *.in file for Kihei, Hawai'i

0.0001	Minimum amplitude of input offshore wave (m)
1	Input minimum depth for offshore (m)
0.1	Input "dry land" depth for inundation (m)
0.0009	Input friction coefficient (n**2)
1	A & B-grid runup flag (0=disallow, 1=allow runup)
300	Blow-up limit (maximum eta before blow-up)
1	Input time step (sec)
288000	Input number of steps
10	Compute "A" arrays every n th time step, n=
1	Compute "B" arrays every n th time step, n=
30	Input number of steps between snapshots
1	Starting from
1	Saving grid every n th node, n=1

Appendix B.

Propagation source details reflect the database as of January 29, 2013. The development of Kihei, Hawai'i forecast inundation model uses the propagation database as of 2011 thus there is a possibility of changes due to updates in the earthquake source parameters after this date.

Figure B.1. Aleutian-Alaska-Cascadia Subduction Zone unit sources

Segment	Description	Longitude	Latitude (°)	Strike	Dip (°)	Depth (km)
acsz-01a	Aleutian-Alaska-Cascadia	164.7994	55.9606	17.00	299.00	19.61
acsz-01b	Aleutian-Alaska-Cascadia	164.4310	55.5849	17.00	299.00	5.00
acsz-02a	Aleutian-Alaska-Cascadia	166.3418	55.4016	17.00	310.17	19.61
acsz-02b	Aleutian-Alaska-Cascadia	165.8578	55.0734	17.00	310.17	5.00
acsz-03a	Aleutian-Alaska-Cascadia	167.2939	54.8919	23.36	300.22	24.82
acsz-03b	Aleutian-Alaska-Cascadia	166.9362	54.5356	23.36	300.22	5.00
acsz-04a	Aleutian-Alaska-Cascadia	168.7131	54.2852	38.51	310.21	25.33
acsz-04b	Aleutian-Alaska-Cascadia	168.3269	54.0168	24.00	310.21	5.00
acsz-05a	Aleutian-Alaska-Cascadia	169.7447	53.7808	37.02	302.77	23.54
acsz-05b	Aleutian-Alaska-Cascadia	169.4185	53.4793	21.77	302.77	5.00
acsz-06a	Aleutian-Alaska-Cascadia	171.0144	53.3054	35.31	303.16	22.92
acsz-06b	Aleutian-Alaska-Cascadia	170.6813	52.9986	21.00	303.16	5.00
acsz-07a	Aleutian-Alaska-Cascadia	172.1500	52.8528	35.56	298.16	20.16
acsz-07b	Aleutian-Alaska-Cascadia	171.8665	52.5307	17.65	298.16	5.00
acsz-08a	Aleutian-Alaska-Cascadia	173.2726	52.4579	37.92	290.75	20.35
acsz-08b	Aleutian-Alaska-Cascadia	173.0681	52.1266	17.88	290.75	5.00
acsz-09a	Aleutian-Alaska-Cascadia	174.5866	52.1434	39.09	289.03	21.05
acsz-09b	Aleutian-Alaska-Cascadia	174.4027	51.8138	18.73	289.03	5.00
acsz-10a	Aleutian-Alaska-Cascadia	175.8784	51.8526	40.51	286.07	20.87
acsz-10b	Aleutian-Alaska-Cascadia	175.7265	51.5245	18.51	286.07	5.00
acsz-11a	Aleutian-Alaska-Cascadia	177.1140	51.6488	15.00	280.00	17.94
acsz-11b	Aleutian-Alaska-Cascadia	176.9937	51.2215	15.00	280.00	5.00
acsz-12a	Aleutian-Alaska-Cascadia	178.4500	51.5690	15.00	273.00	17.94
acsz-12b	Aleutian-Alaska-Cascadia	178.4130	51.1200	15.00	273.00	5.00
acsz-13a	Aleutian-Alaska-Cascadia	179.8550	51.5340	15.00	271.00	17.94
acsz-13b	Aleutian-Alaska-Cascadia	179.8420	51.0850	15.00	271.00	5.00
acsz-14a	Aleutian-Alaska-Cascadia	181.2340	51.5780	15.00	267.00	17.94
acsz-14b	Aleutian-Alaska-Cascadia	181.2720	51.1290	15.00	267.00	5.00
acsz-15a	Aleutian-Alaska-Cascadia	182.6380	51.6470	15.00	265.00	17.94
acsz-15b	Aleutian-Alaska-Cascadia	182.7000	51.2000	15.00	265.00	5.00
acsz-16a	Aleutian-Alaska-Cascadia	184.0550	51.7250	15.00	264.00	17.94
acsz-16b	Aleutian-Alaska-Cascadia	184.1280	51.2780	15.00	264.00	5.00
acsz-17a	Aleutian-Alaska-Cascadia	185.4560	51.8170	15.00	262.00	17.94
acsz-17b	Aleutian-Alaska-Cascadia	185.5560	51.3720	15.00	262.00	5.00
acsz-18a	Aleutian-Alaska-Cascadia	186.8680	51.9410	15.00	261.00	17.94

Table B.1. Earthquake parameters for Aleutian-Alaska-Cascadia Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
acsz-18b	Aleutian-Alaska-Cascadia	186.9810	51.4970	15.00	261.00	5.00
acsz-19a	Aleutian-Alaska-Cascadia	188.2430	52.1280	15.00	257.00	17.94
acsz-19b	Aleutian-Alaska-Cascadia	188.4060	51.6900	15.00	257.00	5.00
acsz-20a	Aleutian-Alaska-Cascadia	189.5810	52.3550	15.00	251.00	17.94
acsz-20b	Aleutian-Alaska-Cascadia	189.8180	51.9300	15.00	251.00	5.00
acsz-21a	Aleutian-Alaska-Cascadia	190.9570	52.6470	15.00	251.00	17.94
acsz-21b	Aleutian-Alaska-Cascadia	191.1960	52.2220	15.00	251.00	5.00
acsz-21z	Aleutian-Alaska-Cascadia	190.7399	53.0443	15.00	250.79	30.88
acsz-22a	Aleutian-Alaska-Cascadia	192.2940	52.9430	15.00	247.00	17.94
acsz-22b	Aleutian-Alaska-Cascadia	192.5820	52.5300	15.00	247.00	5.00
acsz-22z	Aleutian-Alaska-Cascadia	192.0074	53.3347	15.00	247.82	30.88
acsz-23a	Aleutian-Alaska-Cascadia	193.6270	53.3070	15.00	245.00	17.94
acsz-23b	Aleutian-Alaska-Cascadia	193.9410	52.9000	15.00	245.00	5.00
acsz-23z	Aleutian-Alaska-Cascadia	193.2991	53.6768	15.00	244.58	30.88
acsz-24a	Aleutian-Alaska-Cascadia	194.9740	53.6870	15.00	245.00	17.94
acsz-24b	Aleutian-Alaska-Cascadia	195.2910	53.2800	15.00	245.00	5.00
acsz-24y	Aleutian-Alaska-Cascadia	194.3645	54.4604	15.00	244.38	43.82
acsz-24z	Aleutian-Alaska-Cascadia	194.6793	54.0674	15.00	244.64	30.88
acsz-25a	Aleutian-Alaska-Cascadia	196.4340	54.0760	15.00	250.00	17.94
acsz-25b	Aleutian-Alaska-Cascadia	196.6930	53.6543	15.00	250.00	5.00
acsz-25y	Aleutian-Alaska-Cascadia	195.9009	54.8572	15.00	247.90	43.82
acsz-25z	Aleutian-Alaska-Cascadia	196.1761	54.4536	15.00	248.12	30.88
acsz-26a	Aleutian-Alaska-Cascadia	197.8970	54.3600	15.00	253.00	17.94
acsz-26b	Aleutian-Alaska-Cascadia	198.1200	53.9300	15.00	253.00	5.00
acsz-26y	Aleutian-Alaska-Cascadia	197.5498	55.1934	15.00	253.11	43.82
acsz-26z	Aleutian-Alaska-Cascadia	197.7620	54.7770	15.00	253.28	30.88
acsz-27a	Aleutian-Alaska-Cascadia	199.4340	54.5960	15.00	256.00	17.94
acsz-27b	Aleutian-Alaska-Cascadia	199.6200	54.1600	15.00	256.00	5.00
acsz-27x	Aleutian-Alaska-Cascadia	198.9736	55.8631	15.00	256.47	56.24
acsz-27y	Aleutian-Alaska-Cascadia	199.1454	55.4401	15.00	256.62	43.82
acsz-27z	Aleutian-Alaska-Cascadia	199.3135	55.0170	15.00	256.76	30.88
acsz-28a	Aleutian-Alaska-Cascadia	200.8820	54.8300	15.00	253.00	17.94
acsz-28b	Aleutian-Alaska-Cascadia	201.1080	54.4000	15.00	253.00	5.00
acsz-28x	Aleutian-Alaska-Cascadia	200.1929	56.0559	15.00	252.55	56.24
acsz-28y	Aleutian-Alaska-Cascadia	200.4167	55.6406	15.00	252.74	43.82
acsz-28z	Aleutian-Alaska-Cascadia	200.6360	55.2249	15.00	252.92	30.88

Table B.1. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
acsz-29a	Aleutian-Alaska-Cascadia	202.2610	55.1330	15.00	247.00	17.94
acsz-29b	Aleutian-Alaska-Cascadia	202.5650	54.7200	15.00	247.00	5.00
acsz-29x	Aleutian-Alaska-Cascadia	201.2606	56.2861	15.00	245.70	56.24
acsz-29y	Aleutian-Alaska-Cascadia	201.5733	55.8888	15.00	245.96	43.82
acsz-29z	Aleutian-Alaska-Cascadia	201.8797	55.4908	15.00	246.21	30.88
acsz-30a	Aleutian-Alaska-Cascadia	203.6040	55.5090	15.00	240.00	17.94
acsz-30b	Aleutian-Alaska-Cascadia	203.9970	55.1200	15.00	240.00	5.00
acsz-30w	Aleutian-Alaska-Cascadia	201.9901	56.9855	15.00	239.52	69.12
acsz-30x	Aleutian-Alaska-Cascadia	202.3851	56.6094	15.00	239.85	56.24
acsz-30y	Aleutian-Alaska-Cascadia	202.7724	56.2320	15.00	240.17	43.82
acsz-30z	Aleutian-Alaska-Cascadia	203.1521	55.8534	15.00	240.49	30.88
acsz-31a	Aleutian-Alaska-Cascadia	204.8950	55.9700	15.00	236.00	17.94
acsz-31b	Aleutian-Alaska-Cascadia	205.3400	55.5980	15.00	236.00	5.00
acsz-31w	Aleutian-Alaska-Cascadia	203.0825	57.3740	15.00	234.54	69.12
acsz-31x	Aleutian-Alaska-Cascadia	203.5408	57.0182	15.00	234.93	56.24
acsz-31y	Aleutian-Alaska-Cascadia	203.9904	56.6607	15.00	235.30	43.82
acsz-31z	Aleutian-Alaska-Cascadia	204.4315	56.3016	15.00	235.67	30.88
acsz-32a	Aleutian-Alaska-Cascadia	206.2080	56.4730	15.00	236.00	17.94
acsz-32b	Aleutian-Alaska-Cascadia	206.6580	56.1000	15.00	236.00	5.00
acsz-32w	Aleutian-Alaska-Cascadia	204.4129	57.8908	15.00	234.32	69.12
acsz-32x	Aleutian-Alaska-Cascadia	204.8802	57.5358	15.00	234.72	56.24
acsz-32y	Aleutian-Alaska-Cascadia	205.3385	57.1792	15.00	235.10	43.82
acsz-32z	Aleutian-Alaska-Cascadia	205.7880	56.8210	15.00	235.48	30.88
acsz-33a	Aleutian-Alaska-Cascadia	207.5370	56.9750	15.00	236.00	17.94
acsz-33b	Aleutian-Alaska-Cascadia	207.9930	56.6030	15.00	236.00	5.00
acsz-33w	Aleutian-Alaska-Cascadia	205.7126	58.3917	15.00	234.24	69.12
acsz-33x	Aleutian-Alaska-Cascadia	206.1873	58.0371	15.00	234.64	56.24
acsz-33y	Aleutian-Alaska-Cascadia	206.6527	57.6808	15.00	235.03	43.82
acsz-33z	Aleutian-Alaska-Cascadia	207.1091	57.3227	15.00	235.41	30.88
acsz-34a	Aleutian-Alaska-Cascadia	208.9371	57.5124	15.00	236.00	17.94
acsz-34b	Aleutian-Alaska-Cascadia	209.4000	57.1400	15.00	236.00	5.00
acsz-34w	Aleutian-Alaska-Cascadia	206.9772	58.8804	15.00	233.47	69.12
acsz-34x	Aleutian-Alaska-Cascadia	207.4677	58.5291	15.00	233.88	56.24
acsz-34y	Aleutian-Alaska-Cascadia	207.9485	58.1760	15.00	234.29	43.82
acsz-34z	Aleutian-Alaska-Cascadia	208.4198	57.8213	15.00	234.69	30.88
acsz-35a	Aleutian-Alaska-Cascadia	210.2597	58.0441	15.00	230.00	17.94
acsz-35b	Aleutian-Alaska-Cascadia	210.8000	57.7000	15.00	230.00	5.00

Table B.1. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
acsz-35w	Aleutian-Alaska-Cascadia	208.0204	59.3199	15.00	228.81	69.12
acsz-35x	Aleutian-Alaska-Cascadia	208.5715	58.9906	15.00	229.29	56.24
acsz-35y	Aleutian-Alaska-Cascadia	209.1122	58.6590	15.00	229.75	43.82
acsz-35z	Aleutian-Alaska-Cascadia	209.6425	58.3252	15.00	230.20	30.88
acsz-36a	Aleutian-Alaska-Cascadia	211.3249	58.6565	15.00	218.00	17.94
acsz-36b	Aleutian-Alaska-Cascadia	212.0000	58.3800	15.00	218.00	5.00
acsz-36w	Aleutian-Alaska-Cascadia	208.5003	59.5894	15.00	215.59	69.12
acsz-36x	Aleutian-Alaska-Cascadia	209.1909	59.3342	15.00	216.18	56.24
acsz-36y	Aleutian-Alaska-Cascadia	209.8711	59.0753	15.00	216.76	43.82
acsz-36z	Aleutian-Alaska-Cascadia	210.5412	58.8129	15.00	217.33	30.88
acsz-37a	Aleutian-Alaska-Cascadia	212.2505	59.2720	15.00	213.71	17.94
acsz-37b	Aleutian-Alaska-Cascadia	212.9519	59.0312	15.00	213.71	5.00
acsz-37x	Aleutian-Alaska-Cascadia	210.1726	60.0644	15.00	213.04	56.24
acsz-37y	Aleutian-Alaska-Cascadia	210.8955	59.8251	15.00	213.66	43.82
acsz-37z	Aleutian-Alaska-Cascadia	211.6079	59.5820	15.00	214.27	30.88
acsz-38a	Aleutian-Alaska-Cascadia	214.6555	60.1351	0.00	260.08	15.00
acsz-38b	Aleutian-Alaska-Cascadia	214.8088	59.6927	0.00	260.08	15.00
acsz-38y	Aleutian-Alaska-Cascadia	214.3737	60.9838	0.00	259.03	15.00
acsz-38z	Aleutian-Alaska-Cascadia	214.5362	60.5429	0.00	259.03	15.00
acsz-39a	Aleutian-Alaska-Cascadia	216.5607	60.2480	0.00	267.04	15.00
acsz-39b	Aleutian-Alaska-Cascadia	216.6068	59.7994	0.00	267.04	15.00
acsz-40a	Aleutian-Alaska-Cascadia	219.3069	59.7574	0.00	310.91	15.00
acsz-40b	Aleutian-Alaska-Cascadia	218.7288	59.4180	0.00	310.91	15.00
acsz-41a	Aleutian-Alaska-Cascadia	220.4832	59.3390	0.00	300.73	15.00
acsz-41b	Aleutian-Alaska-Cascadia	220.0382	58.9529	0.00	300.73	15.00
acsz-42a	Aleutian-Alaska-Cascadia	221.8835	58.9310	0.00	298.94	15.00
acsz-42b	Aleutian-Alaska-Cascadia	221.4671	58.5379	0.00	298.94	15.00
acsz-43a	Aleutian-Alaska-Cascadia	222.9711	58.6934	0.00	282.34	15.00
acsz-43b	Aleutian-Alaska-Cascadia	222.7887	58.2546	0.00	282.34	15.00
acsz-44a	Aleutian-Alaska-Cascadia	224.9379	57.9054	12.00	340.91	11.09
acsz-44b	Aleutian-Alaska-Cascadia	224.1596	57.7617	7.00	340.91	5.00
acsz-45a	Aleutian-Alaska-Cascadia	225.4994	57.1634	12.00	334.15	11.09
acsz-45b	Aleutian-Alaska-Cascadia	224.7740	56.9718	7.00	334.15	5.00
acsz-46a	Aleutian-Alaska-Cascadia	226.1459	56.3552	12.00	334.15	11.09
acsz-46b	Aleutian-Alaska-Cascadia	225.4358	56.1636	7.00	334.15	5.00
acsz-47a	Aleutian-Alaska-Cascadia	226.7731	55.5830	12.00	332.26	11.09
acsz-47b	Aleutian-Alaska-Cascadia	226.0887	55.3785	7.00	332.26	5.00

Table B.1. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
acsz-48a	Aleutian-Alaska-Cascadia	227.4799	54.6763	12.00	339.40	11.09
acsz-48b	Aleutian-Alaska-Cascadia	226.7713	54.5217	7.00	339.40	5.00
acsz-49a	Aleutian-Alaska-Cascadia	227.9482	53.8155	12.00	341.17	11.09
acsz-49b	Aleutian-Alaska-Cascadia	227.2462	53.6737	7.00	341.17	5.00
acsz-50a	Aleutian-Alaska-Cascadia	228.3970	53.2509	12.00	324.51	11.09
acsz-50b	Aleutian-Alaska-Cascadia	227.8027	52.9958	7.00	324.51	5.00
acsz-51a	Aleutian-Alaska-Cascadia	229.1844	52.6297	12.00	318.36	11.09
acsz-51b	Aleutian-Alaska-Cascadia	228.6470	52.3378	7.00	318.36	5.00
acsz-52a	Aleutian-Alaska-Cascadia	230.0306	52.0768	12.00	310.85	11.09
acsz-52b	Aleutian-Alaska-Cascadia	229.5665	51.7445	7.00	310.85	5.00
acsz-53a	Aleutian-Alaska-Cascadia	231.1735	51.5258	12.00	310.85	11.09
acsz-53b	Aleutian-Alaska-Cascadia	230.7150	51.1935	7.00	310.85	5.00
acsz-54a	Aleutian-Alaska-Cascadia	232.2453	50.8809	12.00	314.11	11.09
acsz-54b	Aleutian-Alaska-Cascadia	231.7639	50.5655	7.00	314.11	5.00
acsz-55a	Aleutian-Alaska-Cascadia	233.3066	49.9032	12.00	333.71	11.09
acsz-55b	Aleutian-Alaska-Cascadia	232.6975	49.7086	7.00	333.71	5.00
acsz-56a	Aleutian-Alaska-Cascadia	234.0588	49.1702	11.00	315.00	12.82
acsz-56b	Aleutian-Alaska-Cascadia	233.5849	48.8584	9.00	315.00	5.00
acsz-57a	Aleutian-Alaska-Cascadia	234.9041	48.2596	11.00	341.00	12.82
acsz-57b	Aleutian-Alaska-Cascadia	234.2797	48.1161	9.00	341.00	5.00
acsz-58a	Aleutian-Alaska-Cascadia	235.3021	47.3812	11.00	344.00	12.82
acsz-58b	Aleutian-Alaska-Cascadia	234.6776	47.2597	9.00	344.00	5.00
acsz-59a	Aleutian-Alaska-Cascadia	235.6432	46.5082	11.00	345.00	12.82
acsz-59b	Aleutian-Alaska-Cascadia	235.0257	46.3941	9.00	345.00	5.00
acsz-60a	Aleutian-Alaska-Cascadia	235.8640	45.5429	11.00	356.00	12.82
acsz-60b	Aleutian-Alaska-Cascadia	235.2363	45.5122	9.00	356.00	5.00
acsz-61a	Aleutian-Alaska-Cascadia	235.9106	44.6227	11.00	359.00	12.82
acsz-61b	Aleutian-Alaska-Cascadia	235.2913	44.6150	9.00	359.00	5.00
acsz-62a	Aleutian-Alaska-Cascadia	235.9229	43.7245	11.00	359.00	12.82
acsz-62b	Aleutian-Alaska-Cascadia	235.3130	43.7168	9.00	359.00	5.00
acsz-63a	Aleutian-Alaska-Cascadia	236.0220	42.9020	11.00	350.00	12.82
acsz-63b	Aleutian-Alaska-Cascadia	235.4300	42.8254	9.00	350.00	5.00
acsz-64a	Aleutian-Alaska-Cascadia	235.9638	41.9818	11.00	345.00	12.82
acsz-64b	Aleutian-Alaska-Cascadia	235.3919	41.8677	9.00	345.00	5.00
acsz-65a	Aleutian-Alaska-Cascadia	236.2643	41.1141	11.00	345.00	12.82
acsz-65b	Aleutian-Alaska-Cascadia	235.7000	41.0000	9.00	345.00	5.00
acsz-238a	Aleutian-Alaska-Cascadia	213.2878	59.8406	15.00	236.83	17.94

Table B.1. continued

Table B.1. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
acsz-238y	Aleutian-Alaska-Cascadia	212.3424	60.5664	15.00	236.83	43.82
acsz-238z	Aleutian-Alaska-Cascadia	212.8119	60.2035	15.00	236.83	30.88

Figure B.2. Central and South America Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-01a	Central and South America	254.4573	20.8170	19.00	358.97	15.40
cssz-01b	Central and South America	254.0035	20.8094	12.00	358.97	5.00
cssz-01z	Central and South America	254.7664	20.8222	50.00	358.97	31.67
cssz-02a	Central and South America	254.5765	20.2806	19.00	336.76	15.40
cssz-02b	Central and South America	254.1607	20.1130	12.00	336.76	5.00
cssz-03a	Central and South America	254.8789	19.8923	18.31	310.60	15.27
cssz-03b	Central and South America	254.5841	19.5685	11.85	310.60	5.00
cssz-04a	Central and South America	255.6167	19.2649	17.62	313.37	15.12
cssz-04b	Central and South America	255.3056	18.9537	11.68	313.37	5.00
cssz-05a	Central and South America	256.2240	18.8148	16.92	302.70	15.00
cssz-05b	Central and South America	255.9790	18.4532	11.54	302.70	5.00
cssz-06a	Central and South America	256.9425	18.4383	16.23	295.15	14.87
cssz-06b	Central and South America	256.7495	18.0479	11.38	295.15	5.00
cssz-07a	Central and South America	257.8137	18.0339	15.54	296.91	14.74
cssz-07b	Central and South America	257.6079	17.6480	11.23	296.91	5.00
cssz-08a	Central and South America	258.5779	17.7151	14.85	290.42	14.61
cssz-08b	Central and South America	258.4191	17.3082	11.08	290.42	5.00
cssz-09a	Central and South America	259.4578	17.4024	14.15	290.48	14.47
cssz-09b	Central and South America	259.2983	16.9944	10.92	290.48	5.00
cssz-10a	Central and South America	260.3385	17.0861	13.46	290.75	14.34
cssz-10b	Central and South America	260.1768	16.6776	10.77	290.75	5.00
cssz-11a	Central and South America	261.2255	16.7554	12.77	291.82	14.21
cssz-11b	Central and South America	261.0556	16.3487	10.62	291.82	5.00
cssz-12a	Central and South America	262.0561	16.4603	12.08	288.86	14.08
cssz-12b	Central and South America	261.9082	16.0447	10.46	288.86	5.00
cssz-13a	Central and South America	262.8638	16.2381	11.38	283.18	13.95
cssz-13b	Central and South America	262.7593	15.8094	10.31	283.18	5.00
cssz-14a	Central and South America	263.6066	16.1435	10.69	272.06	13.81
cssz-14b	Central and South America	263.5901	15.7024	10.15	272.06	5.00
cssz-15a	Central and South America	264.8259	15.8829	10.00	293.03	13.68
cssz-15b	Central and South America	264.6462	15.4758	10.00	293.03	5.00
cssz-15y	Central and South America	265.1865	16.6971	10.00	293.03	31.05
cssz-15z	Central and South America	265.0060	16.2900	10.00	293.03	22.36
cssz-16a	Central and South America	265.7928	15.3507	15.00	304.95	15.82
cssz-16b	Central and South America	265.5353	14.9951	12.50	304.95	5.00
cssz-16y	Central and South America	266.3092	16.0619	15.00	304.95	41.70

Table B.2. Earthquake parameters for Central and South America Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
	1	(°)	(°)	(°)	(°)	(km)
cssz-16z	Central and South America	266.0508	15.7063	15.00	304.95	28.76
cssz-17a	Central and South America	266.4947	14.9019	20.00	299.52	17.94
cssz-17b	Central and South America	266.2797	14.5346	15.00	299.52	5.00
cssz-17y	Central and South America	266.9259	15.6365	20.00	299.52	52.14
cssz-17z	Central and South America	266.7101	15.2692	20.00	299.52	35.04
cssz-18a	Central and South America	267.2827	14.4768	21.50	298.01	17.94
cssz-18b	Central and South America	267.0802	14.1078	15.00	298.01	5.00
cssz-18y	Central and South America	267.6888	15.2148	21.50	298.01	54.59
cssz-18z	Central and South America	267.4856	14.8458	21.50	298.01	36.27
cssz-19a	Central and South America	268.0919	14.0560	23.00	297.64	17.94
cssz-19b	Central and South America	267.8943	13.6897	15.00	297.64	5.00
cssz-19y	Central and South America	268.4880	14.7886	23.00	297.64	57.01
cssz-19z	Central and South America	268.2898	14.4223	23.00	297.64	37.48
cssz-20a	Central and South America	268.8929	13.6558	24.00	296.23	17.94
cssz-20b	Central and South America	268.7064	13.2877	15.00	296.23	5.00
cssz-20y	Central and South America	269.1796	14.2206	45.50	296.23	73.94
cssz-20z	Central and South America	269.0362	13.9382	45.50	296.23	38.28
cssz-21a	Central and South America	269.6797	13.3031	25.00	292.65	17.94
cssz-21b	Central and South America	269.5187	12.9274	15.00	292.65	5.00
cssz-21x	Central and South America	269.8797	13.7690	68.00	292.65	131.79
cssz-21y	Central and South America	269.8130	13.6137	68.00	292.65	85.43
cssz-21z	Central and South America	269.7463	13.4584	68.00	292.65	39.07
cssz-22a	Central and South America	270.4823	13.0079	25.00	288.59	17.94
cssz-22b	Central and South America	270.3492	12.6221	15.00	288.59	5.00
cssz-22x	Central and South America	270.6476	13.4864	68.00	288.59	131.79
cssz-22y	Central and South America	270.5925	13.3269	68.00	288.59	85.43
cssz-22z	Central and South America	270.5374	13.1674	68.00	288.59	39.07
cssz-23a	Central and South America	271.3961	12.6734	25.00	292.45	17.94
cssz-23b	Central and South America	271.2369	12.2972	15.00	292.45	5.00
cssz-23x	Central and South America	271.5938	13.1399	68.00	292.45	131.79
cssz-23y	Central and South America	271.5279	12.9844	68.00	292.45	85.43
cssz-23z	Central and South America	271.4620	12.8289	68.00	292.45	39.07
cssz-24a	Central and South America	272.3203	12.2251	25.00	300.23	17.94
cssz-24b	Central and South America	272.1107	11.8734	15.00	300.23	5.00
cssz-24x	Central and South America	272.5917	12.6799	67.00	300.23	131.12
cssz-24y	Central and South America	272.5012	12.5283	67.00	300.23	85.10
cssz-24z	Central and South America	272.4107	12.3767	67.00	300.23	39.07

Table B.2. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
-	*	(°)	(°)	(°)	(°)	(km)
cssz-25a	Central and South America	273.2075	11.5684	25.00	313.80	17.94
cssz-25b	Central and South America	272.9200	11.2746	15.00	313.80	5.00
cssz-25x	Central and South America	273.5950	11.9641	66.00	313.80	130.43
cssz-25y	Central and South America	273.4658	11.8322	66.00	313.80	84.75
cssz-25z	Central and South America	273.3366	11.7003	66.00	313.80	39.07
cssz-26a	Central and South America	273.8943	10.8402	25.00	320.42	17.94
cssz-26b	Central and South America	273.5750	10.5808	15.00	320.42	5.00
cssz-26x	Central and South America	274.3246	11.1894	66.00	320.42	130.43
cssz-26y	Central and South America	274.1811	11.0730	66.00	320.42	84.75
cssz-26z	Central and South America	274.0377	10.9566	66.00	320.42	39.07
cssz-27a	Central and South America	274.4569	10.2177	25.00	316.10	17.94
cssz-27b	Central and South America	274.1590	9.9354	15.00	316.10	5.00
cssz-27z	Central and South America	274.5907	10.3444	66.00	316.10	39.07
cssz-28a	Central and South America	274.9586	9.8695	22.00	297.10	14.54
cssz-28b	Central and South America	274.7661	9.4988	11.00	297.10	5.00
cssz-28z	Central and South America	275.1118	10.1643	42.50	297.10	33.27
cssz-29a	Central and South America	275.7686	9.4789	19.00	296.60	11.09
cssz-29b	Central and South America	275.5759	9.0992	7.00	296.60	5.00
cssz-30a	Central and South America	276.6346	8.9973	19.00	302.25	9.36
cssz-30b	Central and South America	276.4053	8.6381	5.00	302.25	5.00
cssz-31a	Central and South America	277.4554	8.4152	19.00	309.05	7.62
cssz-31b	Central and South America	277.1851	8.0854	3.00	309.05	5.00
cssz-31z	Central and South America	277.7260	8.7450	19.00	309.05	23.90
cssz-32a	Central and South America	278.1112	7.9425	18.67	302.97	8.49
cssz-32b	Central and South America	277.8775	7.5855	4.00	302.97	5.00
cssz-32z	Central and South America	278.3407	8.2927	21.67	302.97	24.49
cssz-33a	Central and South America	278.7082	7.6620	18.33	287.56	10.23
cssz-33b	Central and South America	278.5785	7.2555	6.00	287.56	5.00
cssz-33z	Central and South America	278.8328	8.0522	24.33	287.56	25.95
cssz-34a	Central and South America	279.3184	7.5592	18.00	269.48	17.94
cssz-34b	Central and South America	279.3223	7.1320	15.00	269.48	5.00
cssz-35a	Central and South America	280.0039	7.6543	17.67	255.90	14.54
cssz-35b	Central and South America	280.1090	7.2392	11.00	255.90	5.00
cssz-35x	Central and South America	279.7156	8.7898	29.67	255.90	79.22
cssz-35y	Central and South America	279.8118	8.4113	29.67	255.90	54.47
cssz-35z	Central and South America	279.9079	8.0328	29.67	255.90	29.72

Table B.2. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-36a	Central and South America	281.2882	7.6778	17.33	282.48	11.09
cssz-36b	Central and South America	281.1948	7.2592	7.00	282.48	5.00
cssz-36x	Central and South America	281.5368	8.7896	32.33	282.48	79.47
cssz-36y	Central and South America	281.4539	8.4190	32.33	282.48	52.73
cssz-36z	Central and South America	281.3710	8.0484	32.33	282.48	25.99
cssz-37a	Central and South America	282.5252	6.8289	17.00	326.91	10.23
cssz-37b	Central and South America	282.1629	6.5944	6.00	326.91	5.00
cssz-38a	Central and South America	282.9469	5.5973	17.00	355.37	10.23
cssz-38b	Central and South America	282.5167	5.5626	6.00	355.37	5.00
cssz-39a	Central and South America	282.7236	4.3108	17.00	24.13	10.23
cssz-39b	Central and South America	282.3305	4.4864	6.00	24.13	5.00
cssz-39z	Central and South America	283.0603	4.1604	35.00	24.13	24.85
cssz-40a	Central and South America	282.1940	3.3863	17.00	35.28	10.23
cssz-40b	Central and South America	281.8427	3.6344	6.00	35.28	5.00
cssz-40y	Central and South America	282.7956	2.9613	35.00	35.28	53.52
cssz-40z	Central and South America	282.4948	3.1738	35.00	35.28	24.85
cssz-41a	Central and South America	281.6890	2.6611	17.00	34.27	10.23
cssz-41b	Central and South America	281.3336	2.9030	6.00	34.27	5.00
cssz-41z	Central and South America	281.9933	2.4539	35.00	34.27	24.85
cssz-42a	Central and South America	281.2266	1.9444	17.00	31.29	10.23
cssz-42b	Central and South America	280.8593	2.1675	6.00	31.29	5.00
cssz-42z	Central and South America	281.5411	1.7533	35.00	31.29	24.85
cssz-43a	Central and South America	280.7297	1.1593	17.00	33.30	10.23
cssz-43b	Central and South America	280.3706	1.3951	6.00	33.30	5.00
cssz-43z	Central and South America	281.0373	0.9573	35.00	33.30	24.85
cssz-44a	Central and South America	280.3018	0.4491	17.00	28.80	10.23
cssz-44b	Central and South America	279.9254	0.6560	6.00	28.80	5.00
cssz-45a	Central and South America	279.9083	-0.3259	10.00	26.91	8.49
cssz-45b	Central and South America	279.5139	-0.1257	4.00	26.91	5.00
cssz-46a	Central and South America	279.6461	-0.9975	10.00	15.76	8.49
cssz-46b	Central and South America	279.2203	-0.8774	4.00	15.76	5.00
cssz-47a	Central and South America	279.4972	-1.7407	10.00	6.90	8.49
cssz-47b	Central and South America	279.0579	-1.6876	4.00	6.90	5.00
cssz-48a	Central and South America	279.3695	-2.6622	10.00	8.96	8.49
cssz-48b	Central and South America	278.9321	-2.5933	4.00	8.96	5.00
cssz-48y	Central and South America	280.2444	-2.8000	10.00	8.96	25.85
cssz-48z	Central and South America	279.8070	-2.7311	10.00	8.96	17.17

Table B.2. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-49a	Central and South America	279.1852	-3.6070	10.00	13.15	8.49
cssz-49b	Central and South America	278.7536	-3.5064	4.00	13.15	5.00
cssz-49y	Central and South America	280.0486	-3.8082	10.00	13.15	25.85
cssz-49z	Central and South America	279.6169	-3.7076	10.00	13.15	17.17
cssz-50a	Central and South America	279.0652	-4.3635	10.33	4.78	9.64
cssz-50b	Central and South America	278.6235	-4.3267	5.33	4.78	5.00
cssz-51a	Central and South America	279.0349	-5.1773	10.67	359.43	10.81
cssz-51b	Central and South America	278.5915	-5.1817	6.67	359.43	5.00
cssz-52a	Central and South America	279.1047	-5.9196	11.00	349.75	11.96
cssz-52b	Central and South America	278.6685	-5.9981	8.00	349.75	5.00
cssz-53a	Central and South America	279.3044	-6.6242	10.25	339.21	11.74
cssz-53b	Central and South America	278.8884	-6.7811	7.75	339.21	5.00
cssz-53y	Central and South America	280.1024	-6.3232	19.25	339.21	37.12
cssz-53z	Central and South America	279.7035	-6.4737	19.25	339.21	20.64
cssz-54a	Central and South America	279.6256	-7.4907	9.50	340.78	11.53
cssz-54b	Central and South America	279.2036	-7.6365	7.50	340.78	5.00
cssz-54y	Central and South America	280.4267	-7.2137	20.50	340.78	37.29
cssz-54z	Central and South America	280.0262	-7.3522	20.50	340.78	19.78
cssz-55a	Central and South America	279.9348	-8.2452	8.75	335.38	11.74
cssz-55b	Central and South America	279.5269	-8.4301	7.75	335.38	5.00
cssz-55x	Central and South America	281.0837	-7.7238	21.75	335.38	56.40
cssz-55y	Central and South America	280.7009	-7.8976	21.75	335.38	37.88
cssz-55z	Central and South America	280.3180	-8.0714	21.75	335.38	19.35
cssz-56a	Central and South America	280.3172	-8.9958	8.00	331.62	11.09
cssz-56b	Central and South America	279.9209	-9.2072	7.00	331.62	5.00
cssz-56x	Central and South America	281.4212	-8.4063	23.00	331.62	57.13
cssz-56y	Central and South America	281.0534	-8.6028	23.00	331.62	37.59
cssz-56z	Central and South America	280.6854	-8.7993	23.00	331.62	18.05
cssz-57a	Central and South America	280.7492	-9.7356	8.60	328.71	10.75
cssz-57b	Central and South America	280.3640	-9.9663	6.60	328.71	5.00
cssz-57x	Central and South America	281.8205	-9.0933	23.40	328.71	57.94
cssz-57y	Central and South America	281.4636	-9.3074	23.40	328.71	38.08
cssz-57z	Central and South America	281.1065	-9.5215	23.40	328.71	18.22
cssz-58a	Central and South America	281.2275	-10.5350	9.20	330.52	10.40
cssz-58b	Central and South America	280.8348	-10.7532	6.20	330.52	5.00
cssz-58y	Central and South America	281.9548	-10.1306	23.80	330.52	38.57
cssz-58z	Central and South America	281.5913	-10.3328	23.80	330.52	18.39

Table B.2. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-59a	Central and South America	281.6735	-11.2430	9.80	326.24	10.05
cssz-59b	Central and South America	281.2982	-11.4890	5.80	326.24	5.00
cssz-59y	Central and South America	282.3675	-10.7876	24.20	326.24	39.06
cssz-59z	Central and South America	282.0206	-11.0153	24.20	326.24	18.56
cssz-60a	Central and South America	282.1864	-11.9946	10.40	326.50	9.71
cssz-60b	Central and South America	281.8096	-12.2384	5.40	326.50	5.00
cssz-60y	Central and South America	282.8821	-11.5438	24.60	326.50	39.55
cssz-60z	Central and South America	282.5344	-11.7692	24.60	326.50	18.73
cssz-61a	Central and South America	282.6944	-12.7263	11.00	325.47	9.36
cssz-61b	Central and South America	282.3218	-12.9762	5.00	325.47	5.00
cssz-61y	Central and South America	283.3814	-12.2649	25.00	325.47	40.03
cssz-61z	Central and South America	283.0381	-12.4956	25.00	325.47	18.90
cssz-62a	Central and South America	283.1980	-13.3556	11.00	318.96	9.79
cssz-62b	Central and South America	282.8560	-13.6451	5.50	318.96	5.00
cssz-62y	Central and South America	283.8178	-12.8300	27.00	318.96	42.03
cssz-62z	Central and South America	283.5081	-13.0928	27.00	318.96	19.33
cssz-63a	Central and South America	283.8032	-14.0147	11.00	317.85	10.23
cssz-63b	Central and South America	283.4661	-14.3106	6.00	317.85	5.00
cssz-63z	Central and South America	284.1032	-13.7511	29.00	317.85	19.77
cssz-64a	Central and South America	284.4144	-14.6482	13.00	315.68	11.96
cssz-64b	Central and South America	284.0905	-14.9540	8.00	315.68	5.00
cssz-65a	Central and South America	285.0493	-15.2554	15.00	313.23	13.68
cssz-65b	Central and South America	284.7411	-15.5715	10.00	313.23	5.00
cssz-66a	Central and South America	285.6954	-15.7816	14.50	307.67	13.68
cssz-66b	Central and South America	285.4190	-16.1258	10.00	307.67	5.00
cssz-67a	Central and South America	286.4127	-16.2781	14.00	304.30	13.68
cssz-67b	Central and South America	286.1566	-16.6381	10.00	304.30	5.00
cssz-67z	Central and South America	286.6552	-15.9365	23.00	304.30	25.78
cssz-68a	Central and South America	287.2481	-16.9016	14.00	311.81	13.68
cssz-68b	Central and South America	286.9442	-17.2264	10.00	311.81	5.00
cssz-68z	Central and South America	287.5291	-16.6007	26.00	311.81	25.78
cssz-69a	Central and South America	287.9724	-17.5502	14.00	314.88	13.68
cssz-69b	Central and South America	287.6496	-17.8590	10.00	314.88	5.00
cssz-69y	Central and South America	288.5530	-16.9934	29.00	314.88	50.02
cssz-69z	Central and South America	288.2629	-17.2718	29.00	314.88	25.78
cssz-70a	Central and South America	288.6731	-18.2747	14.00	320.37	13.25
cssz-70b	Central and South America	288.3193	-18.5527	9.50	320.37	5.00

Table B.2. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-70y	Central and South America	289.3032	-17.7785	30.00	320.37	50.35
cssz-70z	Central and South America	288.9884	-18.0266	30.00	320.37	25.35
cssz-71a	Central and South America	289.3089	-19.1854	14.00	333.19	12.82
cssz-71b	Central and South America	288.8968	-19.3820	9.00	333.19	5.00
cssz-71y	Central and South America	290.0357	-18.8382	31.00	333.19	50.67
cssz-71z	Central and South America	289.6725	-19.0118	31.00	333.19	24.92
cssz-72a	Central and South America	289.6857	-20.3117	14.00	352.39	12.54
cssz-72b	Central and South America	289.2250	-20.3694	8.67	352.39	5.00
cssz-72z	Central and South America	290.0882	-20.2613	32.00	352.39	24.63
cssz-73a	Central and South America	289.7731	-21.3061	14.00	358.94	12.24
cssz-73b	Central and South America	289.3053	-21.3142	8.33	358.94	5.00
cssz-73z	Central and South America	290.1768	-21.2991	33.00	358.94	24.34
cssz-74a	Central and South America	289.7610	-22.2671	14.00	3.06	11.96
cssz-74b	Central and South America	289.2909	-22.2438	8.00	3.06	5.00
cssz-75a	Central and South America	289.6982	-23.1903	14.09	4.83	11.96
cssz-75b	Central and South America	289.2261	-23.1536	8.00	4.83	5.00
cssz-76a	Central and South America	289.6237	-24.0831	14.18	4.67	11.96
cssz-76b	Central and South America	289.1484	-24.0476	8.00	4.67	5.00
cssz-77a	Central and South America	289.5538	-24.9729	14.27	4.30	11.96
cssz-77b	Central and South America	289.0750	-24.9403	8.00	4.30	5.00
cssz-78a	Central and South America	289.4904	-25.8621	14.36	3.86	11.96
cssz-78b	Central and South America	289.0081	-25.8328	8.00	3.86	5.00
cssz-79a	Central and South America	289.3491	-26.8644	14.45	11.34	11.96
cssz-79b	Central and South America	288.8712	-26.7789	8.00	11.34	5.00
cssz-80a	Central and South America	289.1231	-27.7826	14.54	14.16	11.96
cssz-80b	Central and South America	288.6469	-27.6762	8.00	14.16	5.00
cssz-81a	Central and South America	288.8943	-28.6409	14.63	13.19	11.96
cssz-81b	Central and South America	288.4124	-28.5417	8.00	13.19	5.00
cssz-82a	Central and South America	288.7113	-29.4680	14.72	9.68	11.96
cssz-82b	Central and South America	288.2196	-29.3950	8.00	9.68	5.00
cssz-83a	Central and South America	288.5944	-30.2923	14.81	5.36	11.96
cssz-83b	Central and South America	288.0938	-30.2517	8.00	5.36	5.00
cssz-84a	Central and South America	288.5223	-31.1639	14.90	3.80	11.96
cssz-84b	Central and South America	288.0163	-31.1351	8.00	3.80	5.00
cssz-85a	Central and South America	288.4748	-32.0416	15.00	2.55	11.96
cssz-85b	Central and South America	287.9635	-32.0223	8.00	2.55	5.00
cssz-86a	Central and South America	288.3901	-33.0041	15.00	7.01	11.96

Table B.2. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-86b	Central and South America	287.8768	-32.9512	8.00	7.01	5.00
cssz-87a	Central and South America	288.1050	-34.0583	15.00	19.40	11.96
cssz-87b	Central and South America	287.6115	-33.9142	8.00	19.40	5.00
cssz-88a	Central and South America	287.5309	-35.0437	15.00	32.81	11.96
cssz-88b	Central and South America	287.0862	-34.8086	8.00	32.81	5.00
cssz-88z	Central and South America	287.9308	-35.2545	30.00	32.81	24.90
cssz-89a	Central and South America	287.2380	-35.5993	16.67	14.52	11.96
cssz-89b	Central and South America	286.7261	-35.4914	8.00	14.52	5.00
cssz-89z	Central and South America	287.7014	-35.6968	30.00	14.52	26.30
cssz-90a	Central and South America	286.8442	-36.5645	18.33	22.64	11.96
cssz-90b	Central and South America	286.3548	-36.4004	8.00	22.64	5.00
cssz-90z	Central and South America	287.2916	-36.7142	30.00	22.64	27.68
cssz-91a	Central and South America	286.5925	-37.2488	20.00	10.90	11.96
cssz-91b	Central and South America	286.0721	-37.1690	8.00	10.90	5.00
cssz-91z	Central and South America	287.0726	-37.3224	30.00	10.90	29.06
cssz-92a	Central and South America	286.4254	-38.0945	20.00	8.23	11.96
cssz-92b	Central and South America	285.8948	-38.0341	8.00	8.23	5.00
cssz-92z	Central and South America	286.9303	-38.1520	26.67	8.23	29.06
cssz-93a	Central and South America	286.2047	-39.0535	20.00	13.46	11.96
cssz-93b	Central and South America	285.6765	-38.9553	8.00	13.46	5.00
cssz-93z	Central and South America	286.7216	-39.1495	23.33	13.46	29.06
cssz-94a	Central and South America	286.0772	-39.7883	20.00	3.40	11.96
cssz-94b	Central and South America	285.5290	-39.7633	8.00	3.40	5.00
cssz-94z	Central and South America	286.6255	-39.8133	20.00	3.40	29.06
cssz-95a	Central and South America	285.9426	-40.7760	20.00	9.84	11.96
cssz-95b	Central and South America	285.3937	-40.7039	8.00	9.84	5.00
cssz-95z	Central and South America	286.4921	-40.8481	20.00	9.84	29.06
cssz-96a	Central and South America	285.7839	-41.6303	20.00	7.60	11.96
cssz-96b	Central and South America	285.2245	-41.5745	8.00	7.60	5.00
cssz-96x	Central and South America	287.4652	-41.7977	20.00	7.60	63.26
cssz-96y	Central and South America	286.9043	-41.7419	20.00	7.60	46.16
cssz-96z	Central and South America	286.3439	-41.6861	20.00	7.60	29.06
cssz-97a	Central and South America	285.6695	-42.4882	20.00	5.30	11.96
cssz-97b	Central and South America	285.0998	-42.4492	8.00	5.30	5.00
cssz-97x	Central and South America	287.3809	-42.6052	20.00	5.30	63.26
cssz-97y	Central and South America	286.8101	-42.5662	20.00	5.30	46.16
cssz-97z	Central and South America	286.2396	-42.5272	20.00	5.30	29.06

Table B.3. continued
Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-98a	Central and South America	285.5035	-43.4553	20.00	10.53	11.96
cssz-98b	Central and South America	284.9322	-43.3782	8.00	10.53	5.00
cssz-98x	Central and South America	287.2218	-43.6866	20.00	10.53	63.26
cssz-98y	Central and South America	286.6483	-43.6095	20.00	10.53	46.16
cssz-98z	Central and South America	286.0755	-43.5324	20.00	10.53	29.06
cssz-99a	Central and South America	285.3700	-44.2595	20.00	4.86	11.96
cssz-99b	Central and South America	284.7830	-44.2237	8.00	4.86	5.00
cssz-99x	Central and South America	287.1332	-44.3669	20.00	4.86	63.26
cssz-99y	Central and South America	286.5451	-44.3311	20.00	4.86	46.16
cssz-99z	Central and South America	285.9574	-44.2953	20.00	4.86	29.06
cssz-100a	Central and South America	285.2713	-45.1664	20.00	5.68	11.96
cssz-100b	Central and South America	284.6758	-45.1246	8.00	5.68	5.00
cssz-100x	Central and South America	287.0603	-45.2918	20.00	5.68	63.26
cssz-100y	Central and South America	286.4635	-45.2500	20.00	5.68	46.16
cssz-100z	Central and South America	285.8672	-45.2082	20.00	5.68	29.06
cssz-101a	Central and South America	285.3080	-45.8607	20.00	352.58	9.36
cssz-101b	Central and South America	284.7067	-45.9152	5.00	352.58	5.00
cssz-101y	Central and South America	286.5089	-45.7517	20.00	352.58	43.56
cssz-101z	Central and South America	285.9088	-45.8062	20.00	352.58	26.46
cssz-102a	Central and South America	285.2028	-47.1185	5.00	17.72	9.36
cssz-102b	Central and South America	284.5772	-46.9823	5.00	17.72	5.00
cssz-102y	Central and South America	286.4588	-47.3909	5.00	17.72	18.07
cssz-102z	Central and South America	285.8300	-47.2547	5.00	17.72	13.72
cssz-103a	Central and South America	284.7075	-48.0396	7.50	23.37	11.53
cssz-103b	Central and South America	284.0972	-47.8630	7.50	23.37	5.00
cssz-103x	Central and South America	286.5511	-48.5694	7.50	23.37	31.11
cssz-103y	Central and South America	285.9344	-48.3928	7.50	23.37	24.58
cssz-103z	Central and South America	285.3199	-48.2162	7.50	23.37	18.05
cssz-104a	Central and South America	284.3440	-48.7597	10.00	14.87	13.68
cssz-104b	Central and South America	283.6962	-48.6462	10.00	14.87	5.00
cssz-104x	Central and South America	286.2962	-49.1002	10.00	14.87	39.73
cssz-104y	Central and South America	285.6440	-48.9867	10.00	14.87	31.05
cssz-104z	Central and South America	284.9933	-48.8732	10.00	14.87	22.36
cssz-105a	Central and South America	284.2312	-49.4198	9.67	0.25	13.40
cssz-105b	Central and South America	283.5518	-49.4179	9.67	0.25	5.00
cssz-105x	Central and South America	286.2718	-49.4255	9.67	0.25	38.59
cssz-105y	Central and South America	285.5908	-49.4236	9.67	0.25	30.20

Table B.3. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-105z	Central and South America	284.9114	-49.4217	9.67	0.25	21.80
cssz-106a	Central and South America	284.3730	-50.1117	9.25	347.50	13.04
cssz-106b	Central and South America	283.6974	-50.2077	9.25	347.50	5.00
cssz-106x	Central and South America	286.3916	-49.8238	9.25	347.50	37.15
cssz-106y	Central and South America	285.7201	-49.9198	9.25	347.50	29.11
cssz-106z	Central and South America	285.0472	-50.0157	9.25	347.50	21.07
cssz-107a	Central and South America	284.7130	-50.9714	9.00	346.48	12.82
cssz-107b	Central and South America	284.0273	-51.0751	9.00	346.48	5.00
cssz-107x	Central and South America	286.7611	-50.6603	9.00	346.48	36.29
cssz-107y	Central and South America	286.0799	-50.7640	9.00	346.48	28.47
cssz-107z	Central and South America	285.3972	-50.8677	9.00	346.48	20.64
cssz-108a	Central and South America	285.0378	-51.9370	8.67	352.01	12.54
cssz-108b	Central and South America	284.3241	-51.9987	8.67	352.01	5.00
cssz-108x	Central and South America	287.1729	-51.7519	8.67	352.01	35.15
cssz-108y	Central and South America	286.4622	-51.8136	8.67	352.01	27.61
cssz-108z	Central and South America	285.7505	-51.8753	8.67	352.01	20.07
cssz-109a	Central and South America	285.2635	-52.8439	8.33	353.08	12.24
cssz-109b	Central and South America	284.5326	-52.8974	8.33	353.08	5.00
cssz-109x	Central and South America	287.4508	-52.6834	8.33	353.08	33.97
cssz-109y	Central and South America	286.7226	-52.7369	8.33	353.08	26.73
cssz-109z	Central and South America	285.9935	-52.7904	8.33	353.08	19.49
cssz-110a	Central and South America	285.5705	-53.4139	8.00	334.19	11.96
cssz-110b	Central and South America	284.8972	-53.6076	8.00	334.19	5.00
cssz-110x	Central and South America	287.5724	-52.8328	8.00	334.19	32.83
cssz-110y	Central and South America	286.9081	-53.0265	8.00	334.19	25.88
cssz-110z	Central and South America	286.2408	-53.2202	8.00	334.19	18.92
cssz-111a	Central and South America	286.1627	-53.8749	8.00	313.83	11.96
cssz-111b	Central and South America	285.6382	-54.1958	8.00	313.83	5.00
cssz-111x	Central and South America	287.7124	-52.9122	8.00	313.83	32.83
cssz-111y	Central and South America	287.1997	-53.2331	8.00	313.83	25.88
cssz-111z	Central and South America	286.6832	-53.5540	8.00	313.83	18.92
cssz-112a	Central and South America	287.3287	-54.5394	8.00	316.39	11.96
cssz-112b	Central and South America	286.7715	-54.8462	8.00	316.39	5.00
cssz-112x	Central and South America	288.9756	-53.6190	8.00	316.39	32.83
cssz-112y	Central and South America	288.4307	-53.9258	8.00	316.39	25.88
cssz-112z	Central and South America	287.8817	-54.2326	8.00	316.39	18.92
cssz-113a	Central and South America	288.3409	-55.0480	8.00	307.64	11.96

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
cssz-113b	Central and South America	287.8647	-55.4002	8.00	307.64	5.00
cssz-113x	Central and South America	289.7450	-53.9914	8.00	307.64	32.83
cssz-113y	Central and South America	289.2810	-54.3436	8.00	307.64	25.88
cssz-113z	Central and South America	288.8130	-54.6958	8.00	307.64	18.92
cssz-114a	Central and South America	289.5342	-55.5026	8.00	301.48	11.96
cssz-114b	Central and South America	289.1221	-55.8819	8.00	301.48	5.00
cssz-114x	Central and South America	290.7472	-54.3647	8.00	301.48	32.83
cssz-114y	Central and South America	290.3467	-54.7440	8.00	301.48	25.88
cssz-114z	Central and South America	289.9424	-55.1233	8.00	301.48	18.92
cssz-115a	Central and South America	290.7682	-55.8485	8.00	292.70	11.96
cssz-115b	Central and South America	290.4608	-56.2588	8.00	292.70	5.00
cssz-115x	Central and South America	291.6714	-54.6176	8.00	292.70	32.83
cssz-115y	Central and South America	291.3734	-55.0279	8.00	292.70	25.88
cssz-115z	Central and South America	291.0724	-55.4382	8.00	292.70	18.92

Table B.3. continued

Figure B.3. East Philippines Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
	Ĩ	(°)	(°)	(°)	(°)	(km)
epsz-00a	East Philippines	128.5264	1.5930	44.00	180.00	26.92
epsz-00b	East Philippines	128.8496	1.5930	26.00	180.00	5.00
epsz-01a	East Philippines	128.5521	2.3289	44.20	153.61	27.62
epsz-01b	East Philippines	128.8408	2.4720	26.90	153.61	5.00
epsz-02a	East Philippines	128.1943	3.1508	45.90	151.93	32.44
epsz-02b	East Philippines	128.4706	3.2979	32.80	151.93	5.35
epsz-03a	East Philippines	127.8899	4.0428	57.30	155.22	40.22
epsz-03b	East Philippines	128.1108	4.1445	42.70	155.22	6.31
epsz-04a	East Philippines	127.6120	4.8371	71.40	146.84	48.25
epsz-04b	East Philippines	127.7324	4.9155	54.80	146.84	7.39
epsz-05a	East Philippines	127.3173	5.7040	79.90	162.87	57.40
epsz-05b	East Philippines	127.3930	5.7272	79.40	162.87	8.25
epsz-06a	East Philippines	126.6488	6.6027	48.60	178.89	45.09
epsz-06b	East Philippines	126.9478	6.6085	48.60	178.89	7.58
epsz-07a	East Philippines	126.6578	7.4711	50.70	175.76	45.52
epsz-07b	East Philippines	126.9439	7.4921	50.70	175.76	6.83
epsz-08a	East Philippines	126.6227	8.2456	56.70	163.31	45.60
epsz-08b	East Philippines	126.8614	8.3164	48.90	163.31	7.92
epsz-09a	East Philippines	126.2751	9.0961	47.00	164.09	43.59
epsz-09b	East Philippines	126.5735	9.1801	44.90	164.09	8.30
epsz-10a	East Philippines	125.9798	9.9559	43.10	164.46	42.25
epsz-10b	East Philippines	126.3007	10.0438	43.10	164.46	8.09
epsz-11a	East Philippines	125.6079	10.6557	37.80	154.97	38.29
epsz-11b	East Philippines	125.9353	10.8059	37.80	154.97	7.64
epsz-12a	East Philippines	125.4697	11.7452	36.00	172.14	37.01
epsz-12b	East Philippines	125.8374	11.7949	36.00	172.14	7.62
epsz-13a	East Philippines	125.2238	12.1670	32.40	141.53	33.87
epsz-13b	East Philippines	125.5278	12.4029	32.40	141.53	7.08
epsz-14a	East Philippines	124.6476	13.1365	23.00	158.23	25.92
epsz-14b	East Philippines	125.0421	13.2898	23.00	158.23	6.38
epsz-15a	East Philippines	124.3107	13.9453	24.10	156.12	26.51
epsz-15b	East Philippines	124.6973	14.1113	24.10	156.12	6.09
epsz-16a	East Philippines	123.8998	14.4025	19.50	140.32	21.69
epsz-16b	East Philippines	124.2366	14.6728	19.50	140.32	5.00
epsz-17a	East Philippines	123.4604	14.7222	15.30	117.58	18.19
epsz-17b	East Philippines	123.6682	15.1062	15.30	117.58	5.00

Table B.3. Earthquake parameters for East Philippines Subduction Zone unit sources.

1 abic D.J. con	tillucu					
Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
epsz-18a	East Philippines	123.3946	14.7462	15.00	67.40	17.94
epsz-18b	East Philippines	123.2219	15.1467	15.00	67.40	5.00
epsz-19a	East Philippines	121.3638	15.7400	15.00	189.63	17.94
epsz-19b	East Philippines	121.8082	15.6674	15.00	189.63	5.00
epsz-20a	East Philippines	121.6833	16.7930	15.00	203.26	17.94
epsz-20b	East Philippines	122.0994	16.6216	15.00	203.26	5.00
epsz-21a	East Philippines	121.8279	17.3742	15.00	184.19	17.94
epsz-21b	East Philippines	122.2814	17.3425	15.00	184.19	5.00

Table B.3. continued

Figure B.4. Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
U	-	(°)	(°)	(°)	(°)	(km)
kisz-00a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	162.8200	56.3667	29.00	194.41	26.13
kisz-00b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	163.5057	56.2677	25.00	195.00	5.00
kisz-00z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	162.1309	56.4618	29.00	193.84	50.37
kisz-01a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	162.4318	55.5017	29.00	195.00	26.13
kisz-01b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	163.1000	55.4000	25.00	195.00	5.00
kisz-01y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	161.0884	55.7050	29.00	195.00	74.61
kisz-01z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	161.7610	55.6033	29.00	195.00	50.37
kisz-02a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	161.9883	54.6784	29.00	200.00	26.13
kisz-02b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	162.6247	54.5440	25.00	200.00	5.00
kisz-02y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	160.7072	54.9471	29.00	200.00	74.61
kisz-02z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	161.3488	54.8127	29.00	200.00	50.37
kisz-03a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	161.4385	53.8714	29.00	204.00	26.13
kisz-03b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	162.0449	53.7116	25.00	204.00	5.00
kisz-03y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	160.2164	54.1910	29.00	204.00	74.61
kisz-03z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	160.8286	54.0312	29.00	204.00	50.37
kisz-04a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	160.7926	53.1087	29.00	210.00	26.13
kisz-04b	Kamchatka-Kuril-Japan-Izu-				• 1 0 0 0	
	Mariana-Yap	161.3568	52.9123	25.00	210.00	5.00
kisz-04y	Kamchatka-Kuril-Japan-Izu-	1 - 0 0 0		• • • • •	• 1 0 0 0	
	Mariana-Yap	159.6539	53.5015	29.00	210.00	74.61
kisz-04z	Kamchatka-Kuril-Japan-Izu-			• • • • •	9 10.00	
1. 05	Mariana-Yap	160.2246	53.3051	29.00	210.00	50.37
kısz-05a	Kamchatka-Kuril-Japan-Izu-	1.00.0011	50 1110	00.00	010.00	06.10
	Mariana-Yap	160.0211	52.4113	29.00	218.00	26.13

Table B.4. Earthquake parameters for Kamchatka-Kuril-Japan-Izu-Mariana-Yap Subduction Zone unit sources.

Table B.4. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
~ -8	F	(°)	(°)	(°)	(°)	(km)
kisz-05b	Kamchatka-Kuril-Japan-Izu-			. /		. ,
	Mariana-Yap	160.5258	52.1694	25.00	218.00	5.00
kisz-05y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	159.0005	52.8950	29.00	218.00	74.61
kisz-05z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	159.5122	52.6531	29.00	218.00	50.37
kisz-06a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	159.1272	51.7034	29.00	218.00	26.13
kisz-06b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	159.6241	51.4615	25.00	218.00	5.00
kisz-06y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	158.1228	52.1871	29.00	218.00	74.61
kisz-06z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	158.6263	51.9452	29.00	218.00	50.37
kisz-07a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	158.2625	50.9549	29.00	214.00	26.13
kisz-07b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	158.7771	50.7352	25.00	214.00	5.00
kisz-07y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	157.2236	51.3942	29.00	214.00	74.61
kisz-07z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	157.7443	51.1745	29.00	214.00	50.37
kisz-08a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	157.4712	50.2459	31.00	218.00	27.70
kisz-08b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	157.9433	50.0089	27.00	218.00	5.00
kisz-08y	Kamchatka-Kuril-Japan-Izu-		50 5100	21 00	2 10.00	T O T O
1. 00	Mariana-Yap	156.5176	50.7199	31.00	218.00	79.20
kisz-08z	Kamchatka-Kuril-Japan-Izu-	1	50 40 20	21 00	2 10.00	
1. 00	Mariana-Yap	156.9956	50.4829	31.00	218.00	53.45
kisz-09a	Kamchatka-Kuril-Japan-Izu-	156 6114	40 5504	21.00	220.00	27.70
1 . 001	Mariana-Yap	156.6114	49.5584	31.00	220.00	27.70
k1sz-09b	Kamchatka-Kuril-Japan-Izu-	157.0620	40.2100	07.00	220.00	5.00
1. 00	Mariana-Yap	157.0638	49.3109	27.00	220.00	5.00
K1SZ-09Y	Kamchatka-Kuril-Japan-Izu-	155 6074	50.0522	21.00	220.00	70.00
1-1 00-	Mariana-Yap	155.6974	50.0533	31.00	220.00	79.20
K1SZ-U9Z	Kamchatka-Kuril-Japan-Izu-	156 1556	10 0050	21.00	220.00	52 15
1	Mariana-Yap	156.1556	49.8058	31.00	220.00	55.45
к1sz-10a	Kainchatka-Kurii-Japan-IZu-	155 7004	10 0004	21.00	221.00	07 70
ling 10k	Wanahatka Vyyil Japan Jyy	133.7294	40.0804	31.00	221.00	21.10
KISZ-100	Mariana Var	156 1600	10 6070	27.00	221.00	5 00
	мапапа- і ар	130.1090	40.0278	27.00	221.00	5.00

Table B.4. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
kisz-10y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	154.8413	49.3856	31.00	221.00	79.20
kisz-10z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	155.2865	49.1330	31.00	221.00	53.45
kisz-11a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	154.8489	48.1821	31.00	219.00	27.70
kisz-11b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	155.2955	47.9398	27.00	219.00	5.00
kisz-11c	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	156.0358	47.5375	57.89	39.00	4.60
kisz-11y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	153.9472	48.6667	31.00	219.00	79.20
kisz-11z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	154.3991	48.4244	31.00	219.00	53.45
kisz-12a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	153.9994	47.4729	31.00	217.00	27.70
kisz-12b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	154.4701	47.2320	27.00	217.00	5.00
kisz-12c	Kamchatka-Kuril-Japan-Izu-					4 0
	Mariana-Yap	155.2207	46.8473	57.89	37.00	4.60
kisz-12y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	153.0856	47.9363	31.00	217.00	79.20
kisz-12z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	153.5435	47.7046	31.00	217.00	53.45
kisz-13a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	153.2239	46.7564	31.00	218.00	27.70
kisz-13b	Kamchatka-Kuril-Japan-Izu-			•= ••	• 1 0 0 0	
	Mariana-Yap	153.6648	46.5194	27.00	218.00	5.00
kisz-13c	Kamchatka-Kuril-Japan-Izu-				• • • • •	4 - 40
	Mariana-Yap	154.3957	46.1258	57.89	38.00	4.60
kisz-13y	Kamchatka-Kuril-Japan-Izu-				• 1 0 0 0	
1. 10	Mariana-Yap	152.3343	47.2304	31.00	218.00	79.20
kisz-13z	Kamchatka-Kuril-Japan-Izu-	1 50 5001	460004	21 00	2 10.00	
	Mariana-Yap	152.7801	46.9934	31.00	218.00	53.45
kisz-14a	Kamchatka-Kuril-Japan-Izu-			•••		
	Mariana-Yap	152.3657	46.1515	23.00	225.00	24.54
kisz-14b	Kamchatka-Kuril-Japan-Izu-		15 0501	66 66	005.00	
1	Mariana-Yap	152.7855	45.8591	23.00	225.00	5.00
kısz-14c	Kamchatka-Kuril-Japan-Izu-					1
	Mariana-Yap	153.4468	45.3976	57.89	45.00	4.60

Table B.4. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
	_	(°)	(°)	(°)	(°)	(km)
kisz-14y	Kamchatka-Kuril-Japan-Izu-					
-	Mariana-Yap	151.5172	46.7362	23.00	225.00	63.62
kisz-14z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	151.9426	46.4438	23.00	225.00	44.08
kisz-15a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	151.4663	45.5963	25.00	233.00	23.73
kisz-15b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	151.8144	45.2712	22.00	233.00	5.00
kisz-15y	Kamchatka-Kuril-Japan-Izu-					
-	Mariana-Yap	150.7619	46.2465	25.00	233.00	65.99
kisz-15z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	151.1151	45.9214	25.00	233.00	44.86
kisz-16a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	150.4572	45.0977	25.00	237.00	23.73
kisz-16b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	150.7694	44.7563	22.00	237.00	5.00
kisz-16y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	149.8253	45.7804	25.00	237.00	65.99
kisz-16z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	150.1422	45.4390	25.00	237.00	44.86
kisz-17a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	149.3989	44.6084	25.00	237.00	23.73
kisz-17b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	149.7085	44.2670	22.00	237.00	5.00
kisz-17y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	148.7723	45.2912	25.00	237.00	65.99
kisz-17z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	149.0865	44.9498	25.00	237.00	44.86
kisz-18a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	148.3454	44.0982	25.00	235.00	23.73
kisz-18b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	148.6687	43.7647	22.00	235.00	5.00
kisz-18y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.6915	44.7651	25.00	235.00	65.99
kisz-18z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	148.0194	44.4316	25.00	235.00	44.86
kisz-19a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.3262	43.5619	25.00	233.00	23.73
kisz-19b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.6625	43.2368	22.00	233.00	5.00
kisz-19y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.6463	44.2121	25.00	233.00	65.99

Table B.4. continued

Segment	Description	Longitude (°)	Latitude (°)	Strike (°)	Dip (°)	Depth (km)
kisz-19z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.9872	43.8870	25.00	233.00	44.86
kisz-20a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.3513	43.0633	25.00	237.00	23.73
kisz-20b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.6531	42.7219	22.00	237.00	5.00
kisz-20y	Kamchatka-Kuril-Japan-					
5	Izu-Mariana-Yap	145.7410	43.7461	25.00	237.00	65.99
kisz-20z	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	146.0470	43.4047	25.00	237.00	44.86
kisz-21a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	145.3331	42.5948	25.00	239.00	23.73
kisz-21b	Kamchatka-Kuril-Japan-		-			
	Izu-Mariana-Yap	145.6163	42.2459	22.00	239.00	5.00
kisz-21v	Kamchatka-Kuril-Japan-					
5	Izu-Mariana-Yap	144.7603	43.2927	25.00	239.00	65.99
kisz-21z	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	145.0475	42.9438	25.00	239.00	44.86
kisz-22a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	144.3041	42.1631	25.00	242.00	23.73
kisz-22b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	144.5605	41.8037	22.00	242.00	5.00
kisz-22y	Kamchatka-Kuril-Japan-					
5	Izu-Mariana-Yap	143.7854	42.8819	25.00	242.00	65.99
kisz-22z	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	144.0455	42.5225	25.00	242.00	44.86
kisz-23a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	143.2863	41.3335	21.00	202.00	21.28
kisz-23b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	143.8028	41.1764	19.00	202.00	5.00
kisz-23v	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	140.6816	42.1189	21.00	202.00	110.87
kisz-23w	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	141.2050	41.9618	21.00	202.00	92.95
kisz-23x	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	141.7273	41.8047	21.00	202.00	75.04
kisz-23v	Kamchatka-Kuril-Japan-					
J	Izu-Mariana-Yap	142.2482	41.6476	21.00	202.00	57.12
kisz-23z	Kamchatka-Kuril-Japan-	-	-			
	Izu-Mariana-Yap	142.7679	41.4905	21.00	202.00	39.20
kisz-24a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.9795	40.3490	21.00	185.00	21.28

Table B.4. continued

Segment	Description	Longitude	Latitude (°)	Strike	Dip (°)	Depth (km)
kisz-24h	Kamchatka-Kuril-Ianan-Izu-		()	()	()	(1111)
KI52 210	Mariana-Yan	143 5273	40 3125	19.00	185.00	5.00
kis7-94x	Kamchatka-Kuril-Ianan-Izu-	1+3.3273	40.3123	17.00	105.00	5.00
KISL ZHA	Mariana-Van	141 3339	40 4587	21.00	185.00	75 04
kisz-24v	Kamchatka-Kuril-Japan-Izu-	171.5557	10.1307	21.00	105.00	75.04
КІЗ∠-2-ту	Mariana-Van	141 8827	40 4221	21.00	185.00	57 12
kisz-24z	Kamchatka-Kuril-Japan-Jzu-	141.0027	70.7221	21.00	105.00	57.12
KI5Z-2-+Z	Mariana Van	142 4312	10 3856	21.00	185.00	30.20
kiez 25a	Kamehatka Kuril Japan Izu	142.4312	+0.3030	21.00	105.00	37.20
KISZ-2Ja	Mariana Van	142 8830	20 4541	21.00	185.00	21.28
king 25h	Kamahatka Kuril Japan Izu	142.0039	39.4341	21.00	165.00	21.20
KISZ-230	Mariana Van	112 1216	20 /176	10.00	195.00	5 00
Irian 25m	Wanahatka Kuril Japan Jau	145.4240	39.4170	19.00	165.00	5.00
KISZ-25Y	Kamenaika-Kum-Japan-Izu-	141 0013	20 5272	21.00	195 00	57 10
1-1 25-	Mariana-Yap	141.8012	39.5212	21.00	185.00	57.12
KISZ-25Z	Kamenatka-Kurii-Japan-Izu-	140 2400	20 4007	21.00	105 00	20.20
1: 06	Mariana-Yap	142.3426	39.4907	21.00	185.00	39.20
kisz-26a	Kamchatka-Kuril-Japan-Izu-	1 40 7 600	20 5025	2 1 00	100.00	21 2 0
1. 0.1	Mariana-Yap	142.7622	38.5837	21.00	188.00	21.28
kisz-26b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	143.2930	38.5254	19.00	188.00	5.00
kisz-26x	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.1667	38.7588	21.00	188.00	75.04
kisz-26y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.6990	38.7004	21.00	188.00	57.12
kisz-26z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.2308	38.6421	21.00	188.00	39.20
kisz-27a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.5320	37.7830	21.00	198.00	21.28
kisz-27b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	143.0357	37.6534	19.00	198.00	5.00
kisz-27x	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.0142	38.1717	21.00	198.00	75.04
kisz-27y	Kamchatka-Kuril-Japan-Izu-					
2	Mariana-Yap	141.5210	38.0421	21.00	198.00	57.12
kisz-27z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.0269	37.9126	21.00	198.00	39.20
kisz-28a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142 1315	37.0265	21.00	208.00	21.28
kisz-28b	Kamchatka-Kuril-Japan-Izu-	1.2.1313	2,.0200	_1.00	_00.00	21.20
1102 200	Mariana-Yan	142 5941	36 8297	19.00	208.00	5.00
kis7-78x	Kamchatka-Kuril-Ianan-Izu-	112.3771	50.0271	17.00	200.00	5.00
K152 20A	Mariana-Van	140 7348	37 6171	21.00	208.00	75.04
	ivialiana-i ap	140.7348	57.0171	21.00	200.00	73.04

Table B.4. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
-	-	(°)	(°)	(°)	(°)	(km)
kisz-28y	Kamchatka-Kuril-Japan-Izu-					
•	Mariana-Yap	141.2016	37.4202	21.00	208.00	57.12
kisz-28z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.6671	37.2234	21.00	208.00	39.20
kisz-29a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.5970	36.2640	21.00	211.00	21.28
kisz-29b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.0416	36.0481	19.00	211.00	5.00
kisz-29y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.7029	36.6960	21.00	211.00	57.12
kisz-29z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.1506	36.4800	21.00	211.00	39.20
kisz-30a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.0553	35.4332	21.00	205.00	21.28
kisz-30b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.5207	35.2560	19.00	205.00	5.00
kisz-30y	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.1204	35.7876	21.00	205.00	57.12
kisz-30z	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.5883	35.6104	21.00	205.00	39.20
kisz-31a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.6956	34.4789	22.00	190.00	22.10
kisz-31b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.1927	34.4066	20.00	190.00	5.00
kisz-31v	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	138.2025	34.8405	22.00	190.00	115.75
kisz-31w	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	138.7021	34.7682	22.00	190.00	97.02
kisz-31x	Kamchatka-Kuril-Japan-	100 0010	0 4 60 7 0	22 00	100.00	-
1. 01	Izu-Mariana-Yap	139.2012	34.6958	22.00	190.00	78.29
kisz-31y	Kamchatka-Kuril-Japan-	120 6007	24 6225	22 00	100.00	50.56
1. 01	Izu-Mariana-Yap	139.6997	34.6235	22.00	190.00	59.56
kisz-31z	Kamchatka-Kuril-Japan-	140 1070	24 5510	22.00	100.00	10.02
1. 20	Izu-Mariana-Yap	140.1979	34.5512	22.00	190.00	40.83
kisz-32a	Kamchatka-Kuril-Japan-	141 0551	22 0021	22.00	100.00	00.40
1 : 201	Izu-Mariana-Yap	141.0551	33.0921	32.00	180.00	23.48
k1sz-32b	Kamchatka-Kuril-Japan-	141 5000	22.0021	01 (0	100.00	5.00
1. 22	Izu-Mariana-Yap	141.5098	33.0921	21.69	180.00	5.00
K1SZ-35a	Kamenatka-Kuril-Japan-	141.0024	22 1047	27 65	172.05	20 (7
1-1-2-21	IZU-IVIATIANA-YAP	141.0924	32.104/	27.65	1/3.85	20.67
K1SZ-33D	Kamenatka-Kuril-Japan-	141 5506	20 1 472	10.07	172.05	5 00
	Izu-Mariana-Yap	141.5596	32.1473	18.27	1/3.85	5.00

Table B.4. continued

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
•	-	(°)	(°)	(°)	(°)	(km)
kisz-34a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	141.1869	31.1851	25.00	172.14	18.26
kisz-34b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	141.6585	31.2408	15.38	172.14	5.00
kisz-35a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	141.4154	30.1707	25.00	162.98	17.12
kisz-35b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	141.8662	30.2899	14.03	162.98	5.00
kisz-36a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	141.6261	29.2740	25.73	161.68	18.71
kisz-36b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	142.0670	29.4012	15.91	161.68	5.00
kisz-37a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	142.0120	28.3322	20.00	154.72	14.54
kisz-37b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	142.4463	28.5124	11.00	154.72	5.00
kisz-38a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.2254	27.6946	20.00	170.27	14.54
kisz-38b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.6955	27.7659	11.00	170.27	5.00
kisz-39a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.3085	26.9127	24.23	177.23	17.42
kisz-39b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.7674	26.9325	14.38	177.23	5.00
kisz-40a	Kamchatka-Kuril-Japan-Izu-			• • • •	100.11	
	Mariana-Yap	142.2673	26.1923	26.49	189.44	22.26
kisz-40b	Kamchatka-Kuril-Japan-Izu-			••••	100.11	
1	Mariana-Yap	142.7090	26.1264	20.20	189.44	5.00
kisz-41a	Kamchatka-Kuril-Japan-Izu-	1 40 1 50 5	05.0500	22.07	1 7 7 7 7	10.00
1 ' 411	Mariana-Yap	142.1595	25.0729	22.07	1/3./2	19.08
kisz-41b	Kamchatka-Kuril-Japan-Izu-	140 6165	05 1104	16.06	170 70	5.00
1	Mariana-Yap	142.6165	25.1184	16.36	1/3./2	5.00
KISZ-42a	Kamchatka-Kuril-Japan-Izu-	140 7641	22 00 17	01 54	142.50	10.40
1-1 401-	Mariana-Yap	142.7641	23.8947	21.54	143.50	18.40
K1SZ-420	Kamenatka-Kurii-Japan-Izu-	142 1201	04 1420	15 51	142.50	5.00
1207 420	Warahatka Kuril Japan J	143.1321	24.1432	15.54	145.50	5.00
K1SZ-43a	Kainchatka-Kurii-Japan-IZu-	142 5001	22 0 4 2 2	22.02	100.01	10 77
12107 126	Wanahatka Vyyil Japan Jay	143.3281	23.0423	23.02	129.21	18.//
KISZ-43D	Kanichatka-Kurii-Japan-IZu-	142 0120	222626	15 00	100.01	5 00
lang 14c	Wanahatka Vyyil Japan Jyy	143.8128	23.3020	13.99	129.21	5.00
KISZ-44a	Kamena Kar	144 2220	22 5240	10 14	124 62	10 56
	Iviariana- i ap	144.2230	22.3240	28.24	134.03	18.30

Table B.4. continued

Segment	Description	Longitude (°)	Latitude (°)	Strike (°)	Dip (°)	Depth (km)
kisz-44b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	144.5246	22.8056	15.74	134.63	5.00
kisz-45a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	145.0895	21.8866	36.73	125.83	22.79
kisz-45b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	145.3171	22.1785	20.84	125.83	5.00
kisz-46a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	145.6972	21.3783	30.75	135.90	20.63
kisz-46b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	145.9954	21.6469	18.22	135.90	5.00
kisz-47a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.0406	20.9341	29.87	160.07	19.62
kisz-47b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.4330	21.0669	17.00	160.07	5.00
kisz-48a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.3836	20.0690	32.75	157.96	19.68
kisz-48b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.7567	20.2108	17.07	157.96	5.00
kisz-49a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.6689	19.3123	25.07	164.48	21.41
kisz-49b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.0846	19.4212	19.16	164.48	5.00
kisz-50a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.9297	18.5663	22.00	172.07	22.10
kisz-50b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.3650	18.6238	20.00	172.07	5.00
kisz-51a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.9495	17.7148	22.06	175.11	22.04
kisz-51b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.3850	17.7503	19.93	175.11	5.00
kisz-52a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.9447	16.8869	25.51	180.00	18.61
kisz-52b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.3683	16.8869	15.79	180.00	5.00
kisz-53a	Kamchatka-Kuril-Japan-Izu-		-			
	Mariana-Yap	146.8626	16.0669	27.39	185.18	18.41
kisz-53b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	147.2758	16.0309	15.56	185.18	5.00
kisz-54a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.7068	15.3883	28.12	199.05	20.91
kisz-54b	Kamchatka-Kuril-Japan-Izu-			2		
	Mariana-Yap	147.0949	15.2590	18.56	199.05	5.00

Table B.4. continued

Segment	Description	Longitude (°)	Latitude (°)	Strike (°)	Dip (°)	Depth (km)
kisz-55a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.4717	14.6025	29.60	204.35	26.27
kisz-55b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.8391	14.4415	25.18	204.35	5.00
kisz-56a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.1678	13.9485	32.04	217.45	26.79
kisz-56b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	146.4789	13.7170	25.84	217.45	5.00
kisz-57a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	145.6515	13.5576	37.00	235.81	24.54
kisz-57b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	145.8586	13.2609	23.00	235.81	5.00
kisz-58a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	144.9648	12.9990	37.72	237.80	24.54
kisz-58b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	145.1589	12.6984	23.00	237.80	5.00
kisz-59a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	144.1799	12.6914	34.33	242.87	22.31
kisz-59b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	144.3531	12.3613	20.25	242.87	5.00
kisz-60a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	143.3687	12.3280	30.90	244.95	20.62
kisz-60b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	143.5355	11.9788	18.20	244.95	5.00
kisz-61a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.7051	12.1507	35.41	261.84	25.51
kisz-61b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	142.7582	11.7883	24.22	261.84	5.00
kisz-62a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.6301	11.8447	39.86	245.69	34.35
kisz-62b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	141.7750	11.5305	35.94	245.69	5.00
kisz-63a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.8923	11.5740	42.00	256.20	38.46
kisz-63b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.9735	11.2498	42.00	256.20	5.00
kisz-64a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.1387	11.6028	42.48	269.61	38.77
kisz-64b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	140.1410	11.2716	42.48	269.61	5.00
kisz-65a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	139.4595	11.5883	44.16	288.71	39.83

Table B.4. continued

Segment	Description	Longitude	Latitude (°)	Strike	Dip (°)	Depth (km)
kisz-65h	Kamchatka-Kuril-Japan-Jzu-	()	()	()	()	(KIII)
KISZ 050	Mariana-Van	139 3541	11 2831	44 16	288 71	5.00
kisz-66a	Kamchatka-Kuril-Ianan-Izu-	157.5541	11.2031	77.10	200.71	5.00
KI52 00u	Mariana-Yan	138 1823	11 2648	45.00	193 08	40 36
kisz-66b	Kamchatka-Kuril-Japan-Izu-	150.1025	11.2010	15.00	175.00	10.50
KISZ 000	Mariana-Yap	138.4977	11.1929	45.00	193.08	5.00
kisz-67a	Kamchatka-Kuril-Japan-Izu-	10011777			1,0100	0100
	Mariana-Yap	137.9923	10.3398	45.00	189.83	40.36
kisz-67b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	138.3104	10.2856	45.00	189.83	5.00
kisz-68a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	137.7607	9.6136	45.00	201.68	40.36
kisz-68b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	138.0599	9.4963	45.00	201.68	5.00
kisz-69a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	137.4537	8.8996	45.00	213.54	40.36
kisz-69b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	137.7215	8.7241	45.00	213.54	5.00
kisz-70a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	137.0191	8.2872	45.00	226.47	40.36
kisz-70b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	137.2400	8.0569	45.00	226.47	5.00
kisz-71a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	136.3863	7.9078	45.00	263.92	40.36
kisz-71b	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	136.4202	7.5920	45.00	263.92	5.00
kisz-72a	Kamchatka-Kuril-Japan-Izu-					
	Mariana-Yap	135.6310	7.9130	45.00	276.87	40.36
kisz-72b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	135.5926	7.5977	45.00	276.87	5.00
kisz-73a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	134.3296	7.4541	45.00	223.98	40.36
kisz-73b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	134.5600	7.2335	45.00	223.98	5.00
kisz-74a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	133.7125	6.8621	45.00	228.06	40.36
kisz-74b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	133.9263	6.6258	45.00	228.06	5.00
kisz-75a	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	133.0224	6.1221	45.00	217.68	40.36
kisz-75b	Kamchatka-Kuril-Japan-					
	Izu-Mariana-Yap	133.2751	5.9280	45.00	217.68	5.00

Figure B.5. Manus Oceanic Convergent Boundary Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
mosz-01a	Manus	154.0737	-4.8960	15.00	140.23	15.88
mosz-01b	Manus	154.4082	-4.6185	15.00	140.23	2.94
mosz-02a	Manus	153.5589	-4.1575	15.00	140.23	15.91
mosz-02b	Manus	153.8931	-3.8800	15.00	140.23	2.97
mosz-03a	Manus	153.0151	-3.3716	15.00	143.91	16.64
mosz-03b	Manus	153.3662	-3.1160	15.00	143.91	3.70
mosz-04a	Manus	152.4667	-3.0241	15.00	127.66	17.32
mosz-04b	Manus	152.7321	-2.6806	15.00	127.66	4.38
mosz-05a	Manus	151.8447	-2.7066	15.00	114.32	17.57
mosz-05b	Manus	152.0235	-2.3112	15.00	114.32	4.63
mosz-06a	Manus	151.0679	-2.2550	15.00	114.99	17.66
mosz-06b	Manus	151.2513	-1.8618	15.00	114.99	4.72
mosz-07a	Manus	150.3210	-2.0236	15.00	107.20	17.73
mosz-07b	Manus	150.4493	-1.6092	15.00	107.20	4.79
mosz-08a	Manus	149.3226	-1.6666	15.00	117.82	17.83
mosz-08b	Manus	149.5251	-1.2829	15.00	117.82	4.89
mosz-09a	Manus	148.5865	-1.3017	15.00	112.71	17.84
mosz-09b	Manus	148.7540	-0.9015	15.00	112.71	4.90
mosz-10a	Manus	147.7760	-1.1560	15.00	108.01	17.78
mosz-10b	Manus	147.9102	-0.7434	15.00	108.01	4.84
mosz-11a	Manus	146.9596	-1.1226	15.00	102.45	17.54
mosz-11b	Manus	147.0531	-0.6990	15.00	102.45	4.60
mosz-12a	Manus	146.2858	-1.1820	15.00	87.48	17.29
mosz-12b	Manus	146.2667	-0.7486	15.00	87.48	4.35
mosz-13a	Manus	145.4540	-1.3214	15.00	83.75	17.34
mosz-13b	Manus	145.4068	-0.8901	15.00	83.75	4.40
mosz-14a	Manus	144.7151	-1.5346	15.00	75.09	17.21
mosz-14b	Manus	144.6035	-1.1154	15.00	75.09	4.27
mosz-15b	Manus	143.7940	-1.4190	15.00	70.43	3.58
mosz-16a	Manus	143.4850	-2.2118	15.00	50.79	15.86
mosz-16b	Manus	143.2106	-1.8756	15.00	50.79	2.92
mosz-17a	Manus	143.1655	-2.7580	15.00	33.00	16.64
mosz-17b	Manus	142.8013	-2.5217	15.00	33.00	3.70

Table B.5. Earthquake parameters for Manus Oceanic Convergent Boundary Subduction Zone unit sources.

Figure B.6. New Guinea Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
ngsz-01a	New Guinea	143.6063	-4.3804	29.00	120.00	25.64
ngsz-01b	New Guinea	143.8032	-4.0402	29.00	120.00	1.40
ngsz-02a	New Guinea	142.9310	-3.9263	27.63	114.00	20.10
ngsz-02b	New Guinea	143.0932	-3.5628	21.72	114.00	1.60
ngsz-03a	New Guinea	142.1076	-3.5632	20.06	114.00	18.73
ngsz-03b	New Guinea	142.2795	-3.1778	15.94	114.00	5.00
ngsz-04a	New Guinea	141.2681	-3.2376	21.00	114.00	17.76
ngsz-04b	New Guinea	141.4389	-2.8545	14.79	114.00	5.00
ngsz-05a	New Guinea	140.4592	-2.8429	21.26	114.00	16.14
ngsz-05b	New Guinea	140.6296	-2.4605	12.87	114.00	5.00
ngsz-06a	New Guinea	139.6288	-2.4960	22.72	114.00	15.40
ngsz-06b	New Guinea	139.7974	-2.1175	12.00	114.00	5.00
ngsz-07a	New Guinea	138.8074	-2.1312	21.39	114.00	15.40
ngsz-07b	New Guinea	138.9776	-1.7491	12.00	114.00	5.00
ngsz-08a	New Guinea	138.0185	-1.7353	18.79	113.09	15.14
ngsz-08b	New Guinea	138.1853	-1.3441	11.70	113.09	5.00
ngsz-09a	New Guinea	137.1805	-1.5037	15.24	111.00	13.23
ngsz-09b	New Guinea	137.3358	-1.0991	9.47	111.00	5.00
ngsz-10a	New Guinea	136.3418	-1.1774	13.51	111.00	11.09
ngsz-10b	New Guinea	136.4983	-0.7697	7.00	111.00	5.00
ngsz-11a	New Guinea	135.4984	-0.8641	11.38	111.00	12.49
ngsz-11b	New Guinea	135.6562	-0.4530	8.62	111.00	5.00
ngsz-12a	New Guinea	134.6759	-0.5216	10.00	110.48	13.68
ngsz-12b	New Guinea	134.8307	-0.1072	10.00	110.48	5.00
ngsz-13a	New Guinea	133.3065	-1.0298	10.00	99.50	13.68
ngsz-13b	New Guinea	133.3795	-0.5935	10.00	99.50	5.00
ngsz-14a	New Guinea	132.4048	-0.8816	10.00	99.50	13.68
ngsz-14b	New Guinea	132.4778	-0.4453	10.00	99.50	5.00
ngsz-15a	New Guinea	131.5141	-0.7353	10.00	99.50	13.68
ngsz-15b	New Guinea	131.5871	-0.2990	10.00	99.50	5.00

Table B.6. Earthquake parameters for Manus Oceanic Convergent Boundary Subduction Zone unit sources.

Figure B.7. New Zealand-Kermadec-Tonga Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
ntsz-01a	New Zealand-Tonga	174.0985	-41.3951	24.00	258.57	25.34
ntsz-01b	New Zealand-Tonga	174.2076	-41.7973	24.00	258.57	5.00
ntsz-02a	New Zealand-Tonga	175.3289	-41.2592	29.38	260.63	23.17
ntsz-02b	New Zealand-Tonga	175.4142	-41.6454	21.31	260.63	5.00
ntsz-03a	New Zealand-Tonga	176.2855	-40.9950	29.54	250.65	21.74
ntsz-03b	New Zealand-Tonga	176.4580	-41.3637	19.56	250.65	5.00
ntsz-04a	New Zealand-Tonga	177.0023	-40.7679	24.43	229.42	18.87
ntsz-04b	New Zealand-Tonga	177.3552	-41.0785	16.10	229.42	5.00
ntsz-05a	New Zealand-Tonga	177.4114	-40.2396	18.80	210.04	19.29
ntsz-05b	New Zealand-Tonga	177.8951	-40.4525	16.61	210.04	5.00
ntsz-06a	New Zealand-Tonga	177.8036	-39.6085	18.17	196.68	15.80
ntsz-06b	New Zealand-Tonga	178.3352	-39.7310	12.48	196.68	5.00
ntsz-07a	New Zealand-Tonga	178.1676	-38.7480	28.10	197.03	17.85
ntsz-07b	New Zealand-Tonga	178.6541	-38.8640	14.89	197.03	5.00
ntsz-08a	New Zealand-Tonga	178.6263	-37.8501	31.47	201.41	18.78
ntsz-08b	New Zealand-Tonga	179.0788	-37.9899	16.00	201.41	5.00
ntsz-09a	New Zealand-Tonga	178.9833	-36.9770	29.58	202.19	20.02
ntsz-09b	New Zealand-Tonga	179.4369	-37.1245	17.48	202.19	5.00
ntsz-10a	New Zealand-Tonga	179.5534	-36.0655	32.10	210.62	20.72
ntsz-10b	New Zealand-Tonga	179.9595	-36.2593	18.32	210.62	5.00
ntsz-11a	New Zealand-Tonga	179.9267	-35.3538	25.00	201.65	16.09
ntsz-11b	New Zealand-Tonga	180.3915	-35.5040	12.81	201.65	5.00
ntsz-12a	New Zealand-Tonga	180.4433	-34.5759	25.00	201.18	15.46
ntsz-12b	New Zealand-Tonga	180.9051	-34.7230	12.08	201.18	5.00
ntsz-13a	New Zealand-Tonga	180.7990	-33.7707	25.87	199.75	19.06
ntsz-13b	New Zealand-Tonga	181.2573	-33.9073	16.33	199.75	5.00
ntsz-14a	New Zealand-Tonga	181.2828	-32.9288	31.28	202.41	22.73
ntsz-14b	New Zealand-Tonga	181.7063	-33.0751	20.77	202.41	5.00
ntsz-15a	New Zealand-Tonga	181.4918	-32.0035	32.33	205.43	22.64
ntsz-15b	New Zealand-Tonga	181.8967	-32.1665	20.66	205.43	5.00
ntsz-16a	New Zealand-Tonga	181.9781	-31.2535	34.29	205.48	23.59
ntsz-16b	New Zealand-Tonga	182.3706	-31.4131	21.83	205.48	5.00
ntsz-17a	New Zealand-Tonga	182.4819	-30.3859	37.60	210.31	25.58
ntsz-17b	New Zealand-Tonga	182.8387	-30.5655	24.30	210.31	5.00
ntsz-18a	New Zealand-Tonga	182.8176	-29.6545	37.65	201.63	26.13
ntsz-18b	New Zealand-Tonga	183.1985	-29.7856	25.00	201.63	5.00

Table B.7. Earthquake parameters for New Zealand-Kermadec-Tonga Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth (lem)
ntez-10a	New Zealand-Tonga	183.0622	_28 8730	34.41	195 70	26.13
ntsz-19h	New Zealand-Tonga	183.0022	-28.0737	25.00	195.70	5.00
ntsz-20a	New Zealand-Tonga	183 2724	-28.0967	38.00	188 80	26.13
ntsz 200 ntsz-20h	New Zealand-Tonga	183 6691	-28 1508	25.00	188.80	5.00
ntsz-200	New Zealand-Tonga	183.5747	-20.1300	23.00	100.00	24.83
ntsz-214	New Zealand-Tonga	183 9829	-27.1402	23 37	197.10	5.00
ntsz_220	New Zealand-Tonga	183 6608	-26 4975	29.57	180.00	18.63
ntsz 22a	New Zealand-Tonga	184 0974	-26 4975	15.82	180.00	5.00
ntsz-23a	New Zealand-Tonga	183 7599	-25 5371	32 42	185.77	20.56
ntsz-23h	New Zealand-Tonga	184 1781	-25 5752	18.13	185.77	5.00
ntsz-24a	New Zealand-Tonga	183 9139	-24 6201	33 31	188.17	23 73
ntsz-24h	New Zealand-Tonga	184 3228	-24 6734	22.00	188.17	5.00
ntsz-25a	New Zealand-Tonga	184,1266	-23,5922	29.34	198.48	19.64
ntsz-25b	New Zealand-Tonga	184.5322	-23.7163	17.03	198.48	5.00
ntsz-26a	New Zealand-Tonga	184.6613	-22.6460	30.26	211.67	19.43
ntsz-26b	New Zealand-Tonga	185.0196	-22.8497	16.78	211.67	5.00
ntsz-27a	New Zealand-Tonga	185.0879	-21.9139	31.73	207.93	20.67
ntsz-27b	New Zealand-Tonga	185.4522	-22.0928	18.27	207.93	5.00
ntsz-28a	New Zealand-Tonga	185.4037	-21.1758	32.44	200.48	21.76
ntsz-28b	New Zealand-Tonga	185.7849	-21.3084	19.58	200.48	5.00
ntsz-29a	New Zealand-Tonga	185.8087	-20.2629	32.47	206.37	20.40
ntsz-29b	New Zealand-Tonga	186.1710	-20.4312	17.94	206.37	5.00
ntsz-30a	New Zealand-Tonga	186.1499	-19.5087	32.98	200.91	22.46
ntsz-30b	New Zealand-Tonga	186.5236	-19.6432	20.44	200.91	5.00
ntsz-31a	New Zealand-Tonga	186.3538	-18.7332	34.41	193.88	21.19
ntsz-31b	New Zealand-Tonga	186.7339	-18.8221	18.89	193.88	5.00
ntsz-32a	New Zealand-Tonga	186.5949	-17.8587	30.00	194.12	19.12
ntsz-32b	New Zealand-Tonga	186.9914	-17.9536	16.40	194.12	5.00
ntsz-33a	New Zealand-Tonga	186.8172	-17.0581	33.15	190.04	23.34
ntsz-33b	New Zealand-Tonga	187.2047	-17.1237	21.52	190.04	5.00
ntsz-34a	New Zealand-Tonga	186.7814	-16.2598	15.00	182.13	13.41
ntsz-34b	New Zealand-Tonga	187.2330	-16.2759	9.68	182.13	5.00
ntsz-34c*	New Zealand-Tonga	187.9697	-16.4956	57.06	7.62	6.57
ntsz-35a	New Zealand-Tonga	186.8000	-15.8563	15.00	149.85	12.17
ntsz-35b	New Zealand-Tonga	187.1896	-15.6384	8.24	149.85	5.00

Table B.7. continued

Segment	Description	Longitude (°)	Latitude (°)	Strike (°)	Dip (°)	Depth (km)
ntsz-35c*	New Zealand-Tonga	187.8775	-15.6325	57.06	342.45	6.57
ntsz-36a	New Zealand-Tonga	186.5406	-15.3862	40.44	123.91	36.72
ntsz-36b	New Zealand-Tonga	186.7381	-15.1025	39.38	123.91	5.00
ntsz-36c*	New Zealand-Tonga	187.3791	-14.9234	57.06	307.04	6.57
ntsz-37a	New Zealand-Tonga	185.9883	-14.9861	68.94	101.95	30.99
ntsz-37b	New Zealand-Tonga	186.0229	-14.8282	31.32	101.95	5.00
ntsz-38a	New Zealand-Tonga	185.2067	-14.8259	80.00	88.40	26.13
ntsz-38b	New Zealand-Tonga	185.2044	-14.7479	25.00	88.40	5.00
ntsz-39a	New Zealand-Tonga	184.3412	-14.9409	80.00	82.55	26.13
ntsz-39b	New Zealand-Tonga	184.3307	-14.8636	25.00	82.55	5.00

Table B.7. continued

*Rake angle is -90°

Figure B.8. New Britain-Solomons-Vanuatu Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
	-	(°)	(°)	(°)	(°)	(km)
nvsz-01a	New Britain-Vanuatu	148.6217	-6.4616	32.34	243.15	15.69
nvsz-01b	New Britain-Vanuatu	148.7943	-6.8002	12.34	234.15	5.00
nvsz-02a	New Britain-Vanuatu	149.7218	-6.1459	35.10	260.06	16.36
nvsz-02b	New Britain-Vanuatu	149.7856	-6.5079	13.13	260.06	5.00
nvsz-03a	New Britain-Vanuatu	150.4075	-5.9659	42.35	245.69	18.59
nvsz-03b	New Britain-Vanuatu	150.5450	-6.2684	15.77	245.69	5.00
nvsz-04a	New Britain-Vanuatu	151.1095	-5.5820	42.41	238.22	23.63
nvsz-04b	New Britain-Vanuatu	151.2851	-5.8639	21.88	238.22	5.00
nvsz-05a	New Britain-Vanuatu	152.0205	-5.1305	49.22	247.73	32.39
nvsz-05b	New Britain-Vanuatu	152.1322	-5.4020	33.22	247.73	5.00
nvsz-06a	New Britain-Vanuatu	153.3450	-5.1558	53.53	288.58	33.59
nvsz-06b	New Britain-Vanuatu	153.2595	-5.4089	34.87	288.58	5.00
nvsz-07a	New Britain-Vanuatu	154.3814	-5.6308	39.72	308.27	19.18
nvsz-07b	New Britain-Vanuatu	154.1658	-5.9017	16.48	308.27	5.00
nvsz-08a	New Britain-Vanuatu	155.1097	-6.3511	45.33	317.22	22.92
nvsz-08b	New Britain-Vanuatu	154.8764	-6.5656	21.00	317.22	5.00
nvsz-09a	New Britain-Vanuatu	155.5027	-6.7430	48.75	290.51	22.92
nvsz-09b	New Britain-Vanuatu	155.3981	-7.0204	21.00	290.51	5.00
nvsz-10a	New Britain-Vanuatu	156.4742	-7.2515	36.88	305.85	27.62
nvsz-10b	New Britain-Vanuatu	156.2619	-7.5427	26.90	305.85	5.00
nvsz-11a	New Britain-Vanuatu	157.0830	-7.8830	32.97	305.36	29.72
nvsz-11b	New Britain-Vanuatu	156.8627	-8.1903	29.63	305.36	5.00
nvsz-12a	New Britain-Vanuatu	157.6537	-8.1483	37.53	297.94	28.57
nvsz-12b	New Britain-Vanuatu	157.4850	-8.4630	28.13	297.94	5.00
nvsz-13a	New Britain-Vanuatu	158.5089	-8.5953	33.62	302.73	23.02
nvsz-13b	New Britain-Vanuatu	158.3042	-8.9099	21.12	302.73	5.00
nvsz-14a	New Britain-Vanuatu	159.1872	-8.9516	38.44	293.32	34.06
nvsz-14b	New Britain-Vanuatu	159.0461	-9.2747	35.54	293.32	5.00
nvsz-15a	New Britain-Vanuatu	159.9736	-9.5993	46.69	302.76	41.38
nvsz-15b	New Britain-Vanuatu	159.8044	-9.8584	46.69	302.76	5.00
nvsz-16a	New Britain-Vanuatu	160.7343	-10.0574	46.05	300.99	41.00
nvsz-16b	New Britain-Vanuatu	160.5712	-10.3246	46.05	300.99	5.00
nvsz-17a	New Britain-Vanuatu	161.4562	-10.5241	40.12	298.37	37.22
nvsz-17b	New Britain-Vanuatu	161.2900	-10.8263	40.12	298.37	5.00
nvsz-18a	New Britain-Vanuatu	162.0467	-10.6823	40.33	274.07	29.03
nvsz-18b	New Britain-Vanuatu	162.0219	-11.0238	28.72	274.07	5.00
nvsz-19a	New Britain-Vanuatu	162.7818	-10.5645	34.25	261.27	24.14

Table B.8. Earthquake parameters for New Zealand-Kermadec-Tonga Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
nvsz-19b	New Britain-Vanuatu	162.8392	-10.9315	22.51	261.27	5.00
nvsz-20a	New Britain-Vanuatu	163.7222	-10.5014	50.35	262.93	26.30
nvsz-20b	New Britain-Vanuatu	163.7581	-10.7858	25.22	262.93	5.00
nvsz-21a	New Britain-Vanuatu	164.9445	-10.4183	40.31	287.89	23.30
nvsz-21b	New Britain-Vanuatu	164.8374	-10.7442	21.47	287.89	5.00
nvsz-22a	New Britain-Vanuatu	166.0261	-11.1069	42.39	317.08	20.78
nvsz-22b	New Britain-Vanuatu	165.7783	-11.3328	18.40	317.08	5.00
nvsz-23a	New Britain-Vanuatu	166.5179	-12.2260	47.95	342.37	22.43
nvsz-23b	New Britain-Vanuatu	166.2244	-12.3171	20.40	342.37	5.00
nvsz-24a	New Britain-Vanuatu	166.7236	-13.1065	47.13	342.6	28.52
nvsz-24b	New Britain-Vanuatu	166.4241	-13.1979	28.06	342.6	5.00
nvsz-25a	New Britain-Vanuatu	166.8914	-14.0785	54.10	350.28	31.16
nvsz-25b	New Britain-Vanuatu	166.6237	-14.1230	31.55	350.28	5.00
nvsz-26a	New Britain-Vanuatu	166.9200	-15.1450	50.46	365.62	29.05
nvsz-26b	New Britain-Vanuatu	166.6252	-15.1170	28.75	365.62	5.00
nvsz-27a	New Britain-Vanuatu	167.0053	-15.6308	44.74	334.23	25.46
nvsz-27b	New Britain-Vanuatu	166.7068	-15.7695	24.15	334.23	5.00
nvsz-28a	New Britain-Vanuatu	167.4074	-16.3455	41.53	327.46	22.44
nvsz-28b	New Britain-Vanuatu	167.1117	-16.5264	20.42	327.46	5.00
nvsz-29a	New Britain-Vanuatu	167.9145	-17.2807	49.10	341.16	24.12
nvsz-29b	New Britain-Vanuatu	167.6229	-17.3757	22.48	341.16	5.00
nvsz-30a	New Britain-Vanuatu	168.2220	-18.2353	44.19	348.58	23.99
nvsz-30b	New Britain-Vanuatu	167.8895	-18.2991	22.32	348.58	5.00
nvsz-31a	New Britain-Vanuatu	168.5022	-19.0510	42.20	345.59	22.26
nvsz-31b	New Britain-Vanuatu	168.1611	-19.1338	20.20	345.59	5.00
nvsz-32a	New Britain-Vanuatu	168.8775	-19.6724	42.03	331.06	21.68
nvsz-32b	New Britain-Vanuatu	168.5671	-19.8338	19.49	331.06	5.00
nvsz-33a	New Britain-Vanuatu	169.3422	-20.4892	40.25	332.91	22.40
nvsz-33b	New Britain-Vanuatu	169.0161	-20.6453	20.37	332.91	5.00
nvsz-34a	New Britain-Vanuatu	169.8304	-21.2121	39.00	329.15	22.73
nvsz-34b	New Britain-Vanuatu	169.5086	-21.3911	20.77	329.15	5.00
nvsz-35a	New Britain-Vanuatu	170.3119	-21.6945	39.00	311.89	22.13
nvsz-35b	New Britain-Vanuatu	170.0606	-21.9543	20.03	311.89	5.00
nvsz-36a	New Britain-Vanuatu	170.9487	-22.1585	39.42	300.43	23.50
nvsz-36b	New Britain-Vanuatu	170.7585	-22.4577	21.71	300.43	5.00
nvsz-37a	New Britain-Vanuatu	171.6335	-22.3087	30.00	281.26	22.10
nvsz-37b	New Britain-Vanuatu	171.5512	-22.6902	20.00	<u>281.2</u> 6	5.00

Table B.8. continued

Figure B.9. New Zealand-Puyseger Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
nzsz-01a	New Zealand-Puyseger	168.0294	-45.4368	15.00	41.50	17.94
nzsz-01b	New Zealand-Puyseger	167.5675	-45.1493	15.00	41.50	5.00
nzsz-02a	New Zealand-Puyseger	167.3256	-46.0984	15.00	37.14	17.94
nzsz-02b	New Zealand-Puyseger	166.8280	-45.8365	15.00	37.14	5.00
nzsz-03a	New Zealand-Puyseger	166.4351	-46.7897	15.00	39.53	17.94
nzsz-03b	New Zealand-Puyseger	165.9476	-46.5136	15.00	39.53	5.00
nzsz-04a	New Zealand-Puyseger	166.0968	-47.2583	15.00	15.38	17.94
nzsz-04b	New Zealand-Puyseger	165.4810	-47.1432	15.00	15.38	5.00
nzsz-05a	New Zealand-Puyseger	165.7270	-48.0951	15.00	13.94	17.94
nzsz-05b	New Zealand-Puyseger	165.0971	-47.9906	15.00	13.94	5.00
nzsz-06a	New Zealand-Puyseger	165.3168	-49.0829	15.00	22.71	17.94
nzsz-06b	New Zealand-Puyseger	164.7067	-48.9154	15.00	22.71	5.00
nzsz-07a	New Zealand-Puyseger	164.8017	-49.9193	15.00	23.25	17.94
nzsz-07b	New Zealand-Puyseger	164.1836	-49.7480	15.00	23.25	5.00

Table B.9. Earthquake parameters for New Zealand-Puyseger Subduction Zone unit sources.

Figure B.10. Ryukyu-Kyushu-Nankai Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
	-	(°)	(°)	(°)	(°)	(km)
rnsz-01a	Ryukyu-Nankai	122.6672	23.6696	14.00	262.00	11.88
rnsz-01b	Ryukyu-Nankai	122.7332	23.2380	10.00	262.00	3.20
rnsz-02a	Ryukyu-Nankai	123.5939	23.7929	18.11	259.95	12.28
rnsz-02b	Ryukyu-Nankai	123.6751	23.3725	10.00	259.95	3.60
rnsz-03a	Ryukyu-Nankai	124.4604	23.9777	19.27	254.63	14.65
rnsz-03b	Ryukyu-Nankai	124.5830	23.5689	12.18	254.63	4.10
rnsz-04a	Ryukyu-Nankai	125.2720	24.2102	18.00	246.75	20.38
rnsz-04b	Ryukyu-Nankai	125.4563	23.8177	16.00	246.75	6.60
rnsz-05a	Ryukyu-Nankai	125.9465	24.5085	18.00	233.64	20.21
rnsz-05b	Ryukyu-Nankai	126.2241	24.1645	16.00	233.64	6.43
rnsz-06a	Ryukyu-Nankai	126.6349	25.0402	17.16	228.73	19.55
rnsz-06b	Ryukyu-Nankai	126.9465	24.7176	15.16	228.73	6.47
rnsz-07a	Ryukyu-Nankai	127.2867	25.6343	15.85	224.04	17.98
rnsz-07b	Ryukyu-Nankai	127.6303	25.3339	13.56	224.04	6.26
rnsz-08a	Ryukyu-Nankai	128.0725	26.3146	14.55	229.69	14.31
rnsz-08b	Ryukyu-Nankai	128.3854	25.9831	9.64	229.69	5.94
rnsz-09a	Ryukyu-Nankai	128.6642	26.8177	15.40	219.24	12.62
rnsz-09b	Ryukyu-Nankai	129.0391	26.5438	8.00	219.24	5.66
rnsz-10a	Ryukyu-Nankai	129.2286	27.4879	17.00	215.21	12.55
rnsz-10b	Ryukyu-Nankai	129.6233	27.2402	8.16	215.21	5.45
rnsz-11a	Ryukyu-Nankai	129.6169	28.0741	17.00	201.30	12.91
rnsz-11b	Ryukyu-Nankai	130.0698	27.9181	8.80	201.30	5.26
rnsz-12a	Ryukyu-Nankai	130.6175	29.0900	16.42	236.69	13.05
rnsz-12b	Ryukyu-Nankai	130.8873	28.7299	9.57	236.69	4.74
rnsz-13a	Ryukyu-Nankai	130.7223	29.3465	20.25	195.18	15.89
rnsz-13b	Ryukyu-Nankai	131.1884	29.2362	12.98	195.18	4.66
rnsz-14a	Ryukyu-Nankai	131.3467	30.3899	22.16	215.11	19.73
rnsz-14b	Ryukyu-Nankai	131.7402	30.1507	17.48	215.11	4.71
rnsz-15a	Ryukyu-Nankai	131.9149	31.1450	15.11	216.04	16.12
rnsz-15b	Ryukyu-Nankai	132.3235	30.8899	13.46	216.04	4.48
rnsz-16a	Ryukyu-Nankai	132.5628	31.9468	10.81	220.90	10.88
rnsz-16b	Ryukyu-Nankai	132.9546	31.6579	7.19	220.90	4.62
rnsz-17a	Ryukyu-Nankai	133.6125	32.6956	10.14	238.96	12.01
rnsz-17b	Ryukyu-Nankai	133.8823	32.3168	8.41	238.96	4.70
rnsz-18a	Ryukyu-Nankai	134.6416	33.1488	10.99	244.70	14.21
rnsz-18b	Ryukyu-Nankai	134.8656	32.7502	10.97	244.47	4.70

Table B.10. Earthquake parameters for New Zealand-Puyseger Subduction Zone unit sources.

Segment	Description	Longitude	Latitude	Strike	Dip	Depth
		(°)	(°)	(°)	(°)	(km)
rnsz-19a	Ryukyu-Nankai	135.6450	33.5008	14.49	246.46	14.72
rnsz-19b	Ryukyu-Nankai	135.8523	33.1021	11.87	246.46	4.44
rnsz-20a	Ryukyu-Nankai	136.5962	33.8506	15.00	244.77	14.38
rnsz-20b	Ryukyu-Nankai	136.8179	33.4581	12.00	244.77	3.98
rnsz-21a	Ryukyu-Nankai	137.2252	34.3094	15.00	231.90	15.40
rnsz-21b	Ryukyu-Nankai	137.5480	33.9680	12.00	231.90	5.00
rnsz-22a	Ryukyu-Nankai	137.4161	34.5249	15.00	192.27	15.40
rnsz-22b	Ryukyu-Nankai	137.9301	34.4327	12.00	192.27	5.00

Table B.10. continued

Appendix C. Forecast Model tests in SIFT system.

An effective forecast model must provide reliable and stable data for several hours of simulation. This is accomplished by testing the forecast model with a set of synthetic tsunami events covering a range of tsunami source locations and magnitudes. Testing is also done with selected historical tsunami events when available.

The purpose of testing the forecast model is three-fold. The first objective is to assure that the results obtained with NOAA's tsunami forecast system, which has been released to the Tsunami Warning Centers for operational use, are similar to those obtained by the researcher during the development of the forecast model. The second objective is to test the forecast model for consistency, accuracy, time efficiency, and quality of results over a range of possible tsunami locations and magnitudes. The third objective is to identify bugs and issues in need of resolution, either by the researcher who developed the forecast model or by the forecast software development team before the next version release to NOAA's two Tsunami Warning Centers.

Local hardware and software applications are used with tools familiar to the researcher(s) to run the Method of Splitting Tsunamis (MOST) model during the forecast model development. The test results presented in this section lend confidence that the model performs as intended and produces the same results when initiated within the forecast application in an operational setting as those produced by the researcher during the forecast model development. The test results assure those who rely on the Palm Beach, Florida tsunami forecast model that consistent results are produced irrespective of system.

C.1 Testing Procedure

The general procedure for forecast model testing is to run a set of synthetic tsunami scenarios and a selected set of historical tsunami events through the forecast system application and to compare the results with those obtained by the researcher during the forecast model development (as presented in the Tsunami Forecast Model Report). Specific steps taken to test the model include:

- 1. Identification of testing scenarios, including the standard set of synthetic events, appropriate historical events, and customized synthetic scenarios that may have been used by the researcher(s) in developing the forecast model.
- 2. Creation of new events to represent customized synthetic scenarios used by the researcher(s) in developing the forecast model, if any.
- 3. Submission of test model runs with the forecast system, and export of the results from A, B, and C grids, along with time series.
- 4. Recording applicable metadata, including the specific version of the forecast system used for testing.
- 5. Examination of forecast model results for instabilities in both time series and plot results.
- 6. Comparison of forecast model results obtained through the forecast system with those obtained during the forecast model development.

- 7. Summarization of results with specific mention of quality, consistency, and time efficiency.
- 8. Reporting of issues identified to modeler and forecast software development team.
- 9. Retesting the forecast models in the forecast system when reported issues have been addressed or explained.

Simulation of the synthetic models were tested on a DELL PowerEdge R510 computer equipped with two Xeon E5670 processors at 2.93 GHz, each with 12 MBytes of cache and 32GB memory. The processors are hex core and support hyper-threading, resulting in the computer performing as a 24 processor core machine. Additionally, the testing computer supports 10 Gigabit Ethernet for fast network connections. This computer configuration is similar or the same as the configurations of the computers installed at the Tsunami Warning Centers so the compute times should only vary slightly

C.2 Results

The Kihei, Hawai'i forecast model test done in this section used NOAA's tsunami forecast system version 3 with MOST v2.

The Kihei forecast model was tested with four synthetic scenarios and one historical tsunami event. Test results from the forecast system and comparisons with the results obtained during the forecast model development are shown numerically in Table C.1 and graphically in Figures C.1 – C.5. The results show that the forecast model is stable and robust, with consistent and high-quality results across geographically distributed tsunami sources and mega-tsunami event magnitudes. The model run time (wall clock time) was under 21.5 min for 8 hr of simulation time, and under 10.7 min for 4 hr of simulation time. This run time is close to the 10 min run time for 4 hr of simulation time and satisfies time efficiency requirements.

Four synthetic events were run on the Kihei forecast model. A slip of 30m was used rather than the standard 25m for direct comparison purposes. The modeled scenarios were stable for all cases tested, with no instabilities or ringing. Amplitudes greater than 100 cm) were recorded for all test courses. The largest modeled amplitude was 533 cm and originated within the Kamchatka-Yap-Mariana-Izu-Bonin (KISZ 22-31) source. The smallest signal of 184 cm was recorded at the Aleutian-Alaska-Cascadia (ACSZ 56-65) source. The largest modeled tsunami wave amplitude indicated in this section is based only on the four synthetic events (Table 16) and does not represent the largest tsunami wave amplitude from the 29 events tested during its development. The maximum and minimum tsunami amplitude obtained during the forecast model development differs from the ones tested with the tsunami forecast system. This is attributed to the output time step increment. During the development an output time step of 60 sec was used, while the tsunami forecast system uses 30 sec (and also possible changes in the propagation unit sources used since the Kihei, Hawai'i was developed in 2011). Overall, direct comparisons of output from the forecast tool with results of both the Tohoku 2011 historical event and available development synthetic events, demonstrated that the wave pattern at the selected warning point were nearly identical.
Scenario	Source Zone	Tsunami Source	α	SIFT Max	Development	SIFT Min	Development
Name			[m]	(cm)	Max (cm)	(cm)	Min (cm)
Mega-tsunami Scenarios							
KISZ 22-31 ¹	Kamchatka-Yap-Mariana-	A22-A31, B22-B31	30				
	Izu-Bonin			532.5		-157.2	
ACSZ 56-65	Aleutian-Alaska-Cascadia	A56-A65, B56-B65	30	184.9	185.6	-135.8	-135.5
CSSZ 91-100	Central and South America	A91-A100,	30				
		B91-B100		218.7	215.0	-155.6	-155.9
NTSZ 30-39	New Zealand-Kermadec-	A30-A39, B30-B39	30				
	Tonga			307.6	345.2	-150.6	-152.0
Historical Events							
Tohoku 2011	Kamchatka-Yap-Mariana-	See Table 3		162.0	161.6	-143.1	-143.1
	Izu-Bonin						

Table C.1. Table of maximum and minimum amplitudes (cm) at the Kihei, Hawaii warning point for synthetic and historical events tested using SIFT 3.2 and obtained during development.

¹ This scenario was not included in the development

Figure C.1. Response of the Kihei forecast model to synthetic scenario KISZ 22-31 (alpha=30). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d). This scenario was not part of the development tests.

Figure C.2. Response of the Kihei forecast model to synthetic scenario ACSZ 56-65 (alpha=30). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d). The lower time series plot is the result obtained during model development and is shown for comparison with test results.

Figure C.3. Response of the Kihei forecast model to synthetic scenario CSSZ 91-100 (alpha=30). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d). The lower time series plot is the result obtained during model development and is shown for comparison with test results.

Figure C.4. Response of the Kihei forecast model to synthetic scenario NTSZ 30-39 (alpha=30). Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d). The lower time series plot is the result obtained during model development and is shown for comparison with test results.

Figure C.5. Response of the Kihei forecast model to the 2011 Tohoku tsunami. Maximum sea surface elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d). The lower time series plot is the result obtained during model development and is shown for comparison with test results.